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Summary This paper investigates the identification and estimation of dynamic
heterogeneous linear models for unbalanced panel data with known clustering struc-
ture and short time dimension (greater than or equal to 3). For this purpose, I use
a linear multidimensional panel data model with additive cluster fixed effects and
a mixed coefficient structure composed of cluster specific fixed effects and random
cluster-individual-time specific effects. For estimation of the mean coefficients, I pro-
pose a Mean Cluster-FGLS estimator and a Mean Cluster-OLS estimator. In order to
make feasible the GLS estimation of the cluster specific parameters, I introduce a ridge
estimator of the variance-covariance matrix of the model. The Mean Cluster estimators
are consistent when: i) the number of clusters is fixed, the proportion of observed clus-
ters is equal to 1 and the number of individuals per cluster grows to infinity or when
ii) the number of clusters grows at a slower rate than the growth rate of the number
individuals per cluster. In addition, I present two extensions of the baseline model. In
the first one, I allow for cluster-individual specific fixed effects instead of cluster addi-
tive fixed effects. In this setting, I propose a Hierarchical Bayes estimator that takes
into account the problem of unknown initial conditions. In the second extension, I al-
low for cross sectional dependence by including common factors. For estimation of this
model, I propose the Mean Cluster estimator using the time demeaned variables. As
an empirical application, I present the estimation of a value-added model of learning.

Keywords: Panel Data, Clustering, Mixed Coefficients, Variance-Covariance esti-
mation, Ridge, Bayesian Analysis.

1. INTRODUCTION

Heterogeneous linear dynamic panel data models with short time dimension (T) suffer of
two well-known problems: the incidental parameter bias (Nickell, 1981) and the unknown
initial conditions dependency (Hsiao, 2020, Wooldridge, 2005b). When the slope coeffi-
cients are heterogeneous across individuals and the time dimension is equal to 3, GMM
estimation is unfeasible. Similarly debiased Mean Group (MG) estimation (Pesaran and
Smith, 1995) is unfeasible since available debiasing techniques, jackknife (Dhaene and
Jochmans, 2015) and analytical (Kiviet and Phillips, 1993), are suitable only for T larger
than 3. For short time dimensions greater than 3, debiasing is possible but it could be
negatively affected by poor first stage estimates. 1 Another limitation of mean group
estimation is that the small number of time observations prevents the inclusion of a big
number of covariates.

While estimation of dynamic linear panel data models with unobserved multiplicative

1Iterative estimation is helpful for homogeneous panel data (Hahn and Newey, 2004).
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individual heterogeneity and time dimension as short as 3 seems hopeless, one can still
find a workaround for the problem if individuals present similar behavior within known
clusters. A known clustering structure is possible in sampling frameworks where the
population is clearly clustered. For instance, one could think about households within
counties, employees within firms, firms within industries, etc.

This motivates the proposal of an alternative estimation method for dynamic linear
heterogeneous panel data models that exploits the clustering structure in the data. For
this purpose, I assume that individual unobserved heterogeneity is partitioned into two
components: individual heterogeneity correlated with the regressors that is pooled within
clusters and individual heterogeneity that is uncorrelated with the regressors within
clusters. Under this key assumption, it is possible to obtain consistent estimates and
overcome the incidental parameter bias as well as the initial conditions problem.

More specifically, the heterogeneity is modeled with a mixed coefficient structure com-
posed of fixed cluster specific effects and random cluster-individual-time specific effects.
Therefore, the model considered in this paper presents additive and multiplicative cluster
fixed effects instead of individual specific fixed effects.

The key assumption of a mixed coefficient structure is related, but not equal, to the
assumption presented by Krishnakumar et al. (2017) for a static three level linear panel
data model. The latter assumption states that the coefficient vector is equal to the sum
of a mean coefficient vector plus fixed specific effects and random specific effects while
the former assumption states that the coefficient vector is equal to the sum of varying
coefficients at cluster level plus cluster-individual-time random components. In addition
the assumption of a mixed coefficient structure is related to the assumption described
by Hsiao (2014) for two-level panel data that states that coefficients are composed of a
systematic component driven by observed regressors and a random component.

The advantage of the inclusion of cluster fixed effects instead of individual fixed effects
is that the number of clusters specific fixed effects is lower. The dimensionality reduc-
tion of the fixed effects allows consistent estimation because the problem of incidental
parameter bias disappears. Another advantage is that the initial condition dependency
is controlled. In contrast, a disadvantage of the inclusion of cluster fixed effects instead
of individual effects is that the model is misspecified if individuals do not pool within
clusters. I address this problem by extending the model and allowing for additive cluster-
individual fixed effects. Another problem surges if the assumed clustering structure is not
correct.

In particular, I investigate the identification and estimation of dynamic heterogeneous
linear models for clustered panel data that is unbalanced due to randomly missing data
and with short time dimension. For this purpose, I use a three dimensional panel data
framework and consider the following baseline model for individual i belonging to cluster
g:

ygit = ρgygit−1 + x′gitβgit + α1,g + εgit ∀t ∈ (1, 2, ..., Tig ). (1.1)

Index i refers to individual i belonging to cluster g, index t refers to the time observation
t of individual i belonging to cluster g. 2 The number of groups in the panel is equal to m,
the number of individuals per group is equal to Ng and the number of observations per

2I could have used the alternative notation ig that represents individual i belonging to cluster g and
tig for time observation t of individual i belonging to group g as explained in Section 2. However, I use
three indexes in order to simplify the notation.
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individual i in group g is equal to Tig . Each group g has a total number of observations
equal to ng =

∑
ig
Tig .

The parameters of interest of model 1.1 are the cluster specific persistence parameter ρg
and the cluster specific mean coefficients (βg = E[βgit|Fg] with Fg representing cluster g
sub-sigma-field), as well as their overall averages. 3 Additionally, I allow for residual ran-
dom multiplicative cluster-individual-time specific heterogeneity in the coefficient vector
that aims to capture possible random deviations of individuals from their cluster mean.

For estimation of the baseline model 1.1, I propose two Mean Cluster (MC) estimators
and the cluster specific estimators. The Mean Cluster estimators are consistent when: i)
the number of clusters is fixed, the proportion of observed clusters is equal to 1 and the
number of individuals per cluster grows to infinity or when ii) the number of clusters
grows at a slower rate than the growth rate of the number individuals per cluster.

The Mean Cluster estimators are the mean of the FGLS or OLS parameter estima-
tions of each cluster g. In order to make feasible GLS, I propose a ridge estimation of
the variance-covariance components along with a modification suitable for big sample
size. The main advantages of the Mean Cluster estimators are: i) the estimation of dy-
namic heterogeneous panel data models with only three time observations is possible,
ii) the cluster specific persistence parameters are identified, iii) the number of covariates
included in the model is not restricted by the size of the time dimension and iv) the esti-
mators are more efficient because they use a larger sample size, and v) the computational
burden is lower since one partitions the data in clusters. The latter happens because the
estimation technique performs a first step local optimization and global optimization
when averaging in the second step. The main disadvantage of the Mean Cluster FGLS
or OLS estimators are i) not robust to violation of cluster assumption and ii) instability
when the proportion of observed clusters is too small.

In order to test the assumption of clustered individual heterogeneity, I propose two
specification tests that are simple extensions of Hausman test (Hausman and Taylor,
1981). I propose to compare the Mean Cluster estimator with the simple Pooled OLS
estimator in order to test the null hypothesis of homogeneity versus heterogeneity. In case
of rejection of the hypothesis of homogeneity, one can test for the presence of individual
fixed effects by comparing the Mean Cluster estimator against any other GMM, MG
estimator or the Mean Cluster estimator using a Mundlak approach. The study of the
statistical properties of these tests is left for further research.

It is clear that the failure of the assumption of clustered heterogeneity causes inconsis-
tency of the estimators. As a possible solution, I extend the baseline model 1.1 to allow
for the presence of cluster-individual specific additive effects. For this setting, I propose a
bayesian hierarchical estimator. Another issue is the ignorance of cross sectional depen-
dence. In order to deal with this problem, I extend the baseline model 1.1 to a setting
that includes common factors and I propose Mean Cluster estimation using the time
demeaned variables (Sarafidis and Robertson (2009)).

3Model 1 can be rewritten using a two dimensional panel data model for individual i:

yit = αi + ρiyit−1 + x′itβit + εit ∀t ∈ (1, 2, ..., Ti).

In the two-level setting for micro-panel data, parameters can be treated as random variables since individ-
uals can be considered as random draws from a common population (Wooldridge, 2010). Consequently,
βit can be considered as random vector defined on a probability space with sigma-algebra F . Then, the
cluster specific coefficients are equal to the conditional expectation of βit on the cluster specific-sigma
field (Fg) contained in F (βg = E[βit|Fg ]). Similarly, ρg = E[ρi|Gg ] and αg = E[αi|Hg ] where Gg and
Hg are cluster specific sigma fields contained into G and H.
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As an empirical application, I present the estimation of a value-added model of learn-
ing. This illustrates the use of the Mean Cluster estimator in a model that includes cluster
individual specific effects, cluster common factors, and autocorrelated disturbance terms.
Andrabi et al. (2011) show the importance of persistence in program evaluation. They
estimate the impact of enrollment in private school using a value-added model of learning
with panel data obtained by means of cluster sampling of villages in three districts of
Pakistan. The authors faced three main empirical challenges: i) the time dimension is
equal to 3, ii) the dependent variables; scores of Mathematics, Urdu, and English; present
measurement error, and iii) the presence of individual specific unobserved heterogeneity.
In order to eliminate the individual specific effects, the authors use the first-differenced
model. But due to the short time dimension and the measurement error, this transfor-
mation leaves them with no available lags of the dependent variable that can be used
as instruments for GMM estimation. As a solution, the authors assume that the mea-
surement error is uncorrelated across subjects and they use as instrumental variables
the score of other subjects. But a failure of this key assumption invalidates their iden-
tification strategy. In order to propose an alternative estimation procedure, I use the
Mean Cluster estimator after time demeaning the variables and I use the lag of the time
demeaned regressors as instrumental variables. The estimated average persistence pa-
rameter is 0.64, and the average effect of private school on scores is 0.30. The estimated
persistence parameter is larger than the one presented by Andrabi et al. (2011) (0.10)
and the estimated effect of private school is smaller than the one presented by the authors
(0.42).

The literature for dynamic heterogeneous linear panel data models focuses on two-
level panel data models or models that ignore clustering. Pesaran et al. (1999) proposes
a Mean Group estimator that averages the OLS estimators for each individual in the
panel. This estimator is consistent when the time dimension grows to infinity and needs
debiasing when the time dimension is short. Hsiao et al. (1998) presents a hierarchical
Bayes estimator for small panels that assumes that the initial conditions are fixed. The
literature for clustering in panel data concentrates in panels with long time dimension and
suggests corrections when time dimension is short. Bester and Hansen (2016) propose a
grouped estimator for fixed effects non-linear models based on observable characteristics.
Bonhomme and Manresa (2015) propose a grouping algorithm to classify individuals
based on observables and unobservables.

This paper contributes to the literature in five ways: i) it introduces an assumption of
a mixed coefficient structure for three level panel data that states that the coefficients are
composed of fixed coefficients varying at the cluster level and cluster-individual specific
random effects 4, ii) it proposes a Mean Cluster estimator, appropriate for settings when
debiasing is not feasible, iii) it provides the conditions for consistency of the Mean Cluster
estimators, iv) it provides an estimation method for the variance-covariance of the model
by extending the method presented by Krishnakumar et al. (2017) to a dynamic setting,
and v) it proposes a hierarchical Bayesian estimator that takes into account the initial
conditions.

The rest of the paper is organized as follows: Section 2 explains the structure of the

4This assumption is not equal to the one proposed by Hsiao et al. (1989). The authors proposed a mixed
fixed and random coefficients framework which means that some regressors present fixed coefficients and
other random coefficients while I assume that the coefficients of the regressors are the sum of cluster
fixed specific effects and random effects.
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data, Section 3 presents the model and the necessary assumptions, Section 4 states the
identification of the parameters of interest, Section 5 presents the estimation strategy,
Section 6 exposes the statistical properties of the methods proposed, Section 7 explains
possible limitations of model 1.1, Section 8 presents specification tests, Section 9 relaxes
the assumption of additive cluster effects to cluster-individual additive specific effects and
presents a Hierarchical Bayes estimator, Section 10 presents an extension of the model
with cross sectional dependence, Section 11 describes the Monte Carlo experiments and
the results, Section 12 presents an empirical application, Section 13 gives the conclusions.

Notation: || · ||2 is the Euclidean norm. || · ||F is the Frobenius norm. Scalar random
variables are collected in row vectors, for instance ygit can be collected in the the vector
Y ∈ RM (Y = (y111, ..., ymNmTim )). The transpose of random column vectors are col-
lected in matrices, for instance K regressors xgit are stack up in the matrix X ∈ RM×K .
IA represents the identity matrix with dimension A×A where A is a positive integer.

2. DATA STRUCTURE

The data {yit, xit}Ni=1 is obtained from stratified sampling and it can be partitioned

in non overlapping subsets {ygit, xgit}
Ng
gi=1. This means that the population is stratified

in m non overlapping independent known clusters. For each cluster g, Ng individuals
are sampled over Tig periods of time. The total number of individuals across clusters
is N =

∑m
g Ng. The total number of observations per cluster g is ng =

∑
ig
Tig . The

total number of observations in the data set is M =
∑m
g ng. This data can be seen as

unbalanced three level panel.

I define the following subscripts:

• g denotes each group and takes values g ∈ (1, 2, ...,m).
• ig denotes individual ig in group g and takes values ig ∈ (1, 2, ..., Ng).
• tig denotes time observation t of individual ig in group g and takes values tig ∈

(1, 2, ..., Tig ).

Remark 2.1. For simplicity, I use i and t equivalently to ig and tig . This does not mean
that I assume that individual i is not subordinated to g.

3. THE MODEL

I consider the autoregressive distributed lag ARDL(1,0) heterogeneous panel data model
for a random draw i from the population of cluster g:

ygit = α1,g + ρgygit−1 + x′gitβgit + εgit t = 1, ..., Tig , (3.1)

with:

βgit = βg + λgit. (3.2)

where ygit is the observed outcome variable with support Y ⊆ R, ygit−1 is the first lag
of the outcome variable and xgit is a K × 1 vector of observed explanatory variables for
individual i in cluster g for period t with support X ⊆ RK (variables with finite support
are also allowed), εgit is an unobserved idiosyncratic cluster-individual error term in
period t.

The unobserved parameters of interest are the cluster-specific parameter (ρg) and the
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cluster specific slope coefficients (βg). The model also includes cluster additive specific
fixed effects (α1,g ) as well as multiplicative cluster-individual-time specific effects (λgit).
Since individuals belong to an overall population that is partitioned in known clusters,
there is also interest in the overall averages of the parameters E[ρg], E[βg].

5

The total number of time observations per individual Tig is small and considered as
fixed in the asymptotic analysis. The number of individuals per cluster is Ng and the
total number of individuals in the panel N are growing to infinity. This setting can be
evaluated using an asymptotic sequence framework where I allow Ng to grow but the
time dimension Tig is fixed (Moon et al., 2018).

As mentioned before, it is well known that the growth of the individual dimension
produces an incidental parameter bias when there is individual specific heterogeneity
and the time dimension is short. A standard approach to avoid this incidental parameter
problem is to assume random coefficients for each individual i in the sample or just allow
for additive individual fixed effects. In this paper, I handle this problem by imposing
clustered heterogeneity and using a novel mixed structure in the slope coefficients.

More specifically, I assume that ρg is fixed and the slope coefficient vector presents
a mixed structure (βgit = βg + λgit) composed of a cluster specific fixed component
(βg) and a random cluster-individual-time specific effect λgit. In addition, I assume a
full variance-covariance matrix for the random cluster-individual-time specific effect that
captures the covariance between marginal effects of the included regressors in the model.
This coefficient structure allows for possible clustered endogenous heterogeneity while
admitting random deviations of individual time specific marginal effects from their cluster
mean. For instance, one could think that the heterogeneous habit formation of individuals
in a certain cluster is driven by common cultural unobserved characteristics while possible
deviations are random and non correlated to “taste-shifters”. 6

This coefficient structure can have two possible interpretations: i) the data is sam-
pled from a density function with heterogeneous parameters or ii) the regressors are
freely correlated to cluster specific effects while preserving non correlation with cluster-
individual-time specific effects. The latter could be the possible if one is willing to assume
that the correlation of the regressors with unobserved individual heterogeneity is equal
within clusters. For instance, the inner ability and the marginal return to education of
individuals is equally correlated to education within a city if we believe that individuals
with higher ability do not only self-select into education levels but also into the city
where they will have the highest return to their education (See Appendix C).

This model is relevant for different empirical applications since it permits to account
for correlated cluster heterogeneity as well as individual and time heterogeneity. For
instance, one could be interested in the the study of dynamic heterogeneous demand
equations, the heterogeneity of habit formation, the heterogeneity of income persistence,
the dynamic heterogeneous treatment effects and others.

In the following lines, I present the assumptions of the model with more detail.

Assumption 3.1. Cluster membership is known and fixed over time.

The clusters are known by the researcher based on observed characteristics. For instance,
clustering can be done by counties or sub-regions, economic activity categories at a

5They can be seen as average partial effects as explained by Wooldridge (2005a).
6Dynan (2000) calls “taste-shifter” to preference related variables.
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detailed level, etc. The membership of individual i into cluster g is denoted by the
indicator variable sgi ∈ {0, 1} that takes value 1 if the individual belongs to cluster g and
0 otherwise. Thus, each individual has m indicator variables. It is important to notice
that cluster belonging does not vary with time.

Remark 3.1. The sum of sgi for all individuals in the panel gives the number of indi-

viduals in the cluster g (
∑N
i s

g
i = Ng).

Assumption 3.2. Number of individuals within cluster is growing.

N →∞⇒ Ng →∞, ∀g ∈ (1, 2, ...,m).

The number of individuals within cluster grows to infinity when the number of individuals
in the panel grows to infinity. This could be the case for households within sub-region or
enterprises in an economic sector.

Assumption 3.3. Non vanishing clusters.

lim
N→∞

Ng
N
→ wg, ∀g ∈ (1, 2, ...,m),

wg ∈ (0, 1).

The proportion of cluster population to the overall population converges to a fixed num-
ber greater than 0 but less than 1 as the number of individuals within cluster and the
total number of individuals in the panel grows to infinity.

Remark 3.2. This assumption implies that the number of clusters is fixed.

Remark 3.3. It is possible to assume that the number of clusters grows. In this case, it
is necessary to add a restriction to its growth rate by assuming that it grows at a slower

rate than the number of individuals in the cluster such as

√
m(ng)

ng
→ 0. This means

that the number of clusters is an increasing monotonic function of the total number of
observations within cluster and its square root is o(ng). An example of this setting could
be the Public Use Microdata Areas (PUMA) of USA. Each PUMA has at least 100,000
individuals per unit and the number of PUMAs is large. In this case, we can assume
that cluster specific effects are random either correlated or not to the regressors and
the estimation method given in section 5 is still consistent for both cluster and mean
coefficients. Nevertheless, the asymptotic framework is different from the one presented
in section 6 and it is provided in the Appendix C.

Remark 3.4. If one desires to relax completely the requirement of growing individuals
per cluster and still obtain unbiased estimators per cluster, one needs a debiased cluster
estimator.

Assumption 3.4. The proportion of observed clusters (q) is equal to 1.

This assumption is line with a setting where the available sample is obtained from
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stratified sampling. Abadie et al. (2017) discusses the importance of the proportion of
observed clusters.

Remark 3.5. The proportion of observed clusters can be lower than 1. This means that
not all clusters are sampled and as a result one can assume that the data available is
obtained from cluster sampling. In the Appendix C, I present the assumptions that are
compatible with this setting. An example of this data is the one used by Andrabi et al.
(2011) and that I employ for the empirical application in Section 12.

Assumption 3.5. Fixed cluster specific persistence parameter.

ρg ∈ (−1, 1).

α2, g = ρg − E[ρg].

Assumption 3.6. Fixed cluster additive specific effects α1,g.

Assumption 3.7. Mixed cluster-individual-time specific coefficients.

βgit = βg + λgit,

E[λgitλ
′
g′i′t′ ] =

{
∆λg if g = g′, i = i′andt = t′

0 otherwise.
,

α3, g = βg − E[βg].

The unobserved coefficient vector is composed of a fixed cluster coefficient vector (βg) and
a heteroskedastic random component (λgit) that captures the multiplicative heterogeneity
over time for each individual of cluster g.

Assumption 3.8. ygit are generated from the stationary process with initialization values
ygi,−hig sampled hig number of periods before the data collection in period 0.

This implies that the initial observations are given by:

ygi0 = ρ
hig
g ygi,−hig + α1,g

1− ρhigg
1− ρg

+

hgi∑
l=0

ρlgx
′
gi−lβgi−l +

hig∑
l=0

ρlgεgi−l. (3.3)

hig is set free, this is possible thanks to the Assumption 3.6. If the model presents
cluster-individual additive fixed effects instead of cluster additive effects and hig is small,
the individual initialization values are important. In that case, there is need to add an
additional assumption to avoid the incidental parameter problem: E[ygi,−hig ] = bg On
the other hand, having hig → ∞ means that the effect of the initialization value dies.
This is similar to Hsiao et al. (2002).

Assumption 3.9. xgit are generated from:
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xgit = µg + ρxxgit−l + ωgit, |ρx| < 1.

xgit are stationary with ωgit i.i.d with variance σ2
ω. This assumption is similar to the one

presented by Hsiao et al. (2002).

Remark 3.6. The method presented in section 5 allows for trend stationary regressors
only if the data generating process started a short time ago (small hig ). An example could
be the wage of young individuals and in this case, one can include age and experience as
regressors in our model.

Remark 3.7. This assumption states that the dependent variable and the regressors
are both integrated of order 0. Additionally, it is necessary when the model presents
cluster-individual additive specific effects (Assumption 9.1) instead of cluster additive
specific fixed effects (Assumption 3.6).

Remark 3.8. Under this assumption, binary regressors are modeled with a linear prob-
ability model. In this case, a more suitable assumption could be a dynamic latent model.
Another option could be a Markov chain assumption. This is left for further research.

Assumption 3.10. The random cluster-individual-time effects are zero mean conditional
on the covariates.

E[λgit|xgi1, xgi2, ..., xgiT , ygit−1] = 0.

This implies that E[βgit|xgi1, xgi2, ..., xgiT , ygit−1] = βg.

Assumption 3.11. Strict exogeneity of the covariates with the disturbance term.

E[εgit|xgi1, xgi2, ..., xgiT , ygit−1] = 0.

This assumption is in line with Hsiao et al. (1998) and it rules out possible feedback
of ygit with future values of the covariates. It implies that the model presents dynamic
completeness without conditioning on cluster effects because cluster specific effects are
considered as fixed parameters. However, one can also condition on cluster specific effects
and obtain the same orthogonality conditions presented in section 4 if one would like to
assume for correlated cluster random effects (See Appendix C).

Remark 3.9. According to Wooldridge (2010), strict exogeneity rules out possible feed-
back of the past values of the dependent variable to the covariates. Allowing for this
feedback requires relaxing this assumption to sequential exogeneity. This assumption is
weaker than strict exogeneity since it allows for feedback from ygit to xgit+1, ..., xgiT .
For instance, consumption in period t can have an effect in taste shifters in periods after
t. In order to allow for this possible feedback, it is necessary to modify the first stage
of the estimation method proposed in section 5 by replacing OLS and GLS by GMM
using instrumental variables. In the empirical application, I use GMM estimation with
instrumental variables.
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Assumption 3.12. Error term εgit is identically and independently distributed over t
and i in each cluster g but heteroskedastic across clusters.

E[εgit] = 0, E[ε2
git] = σ2

εg <∞.

4. IDENTIFICATION

We can rewrite the model as:

ygit = ρgygit−1 + α1,g + x′gitβg + ugit = z′gitθg + ugit, (4.1)

where: zgit = [ygit−1, 1, x
′
git]
′, θg = [ρg, α1,g, β

′
g]
′, ugit = x′gitλgit + εgit is a composite

error term.
Assumptions 3.10 and 3.11 imply the following orthogonality conditions: 7

E[ugitxgis] = 0 ∀s ∈ (1, 2, ..., T ), i ∈ (1, 2, ..., Ng), g ∈ (1, 2, ...,m), (4.2)

E[ugitygit−1] = 0 ∀t ∈ (1, 2, ..., T ), i ∈ (1, 2, ..., Ng), g ∈ (1, 2, ...,m). (4.3)

Consequently, the moment conditions used for estimation of the cluster specific parame-
ters are:

E[ugitzgit] = 0 ∀t ∈ (1, 2, ..., T ), i ∈ (1, 2, ..., Ng).(4.4)

Note that I only use contemporaneous exogeneity for estimation of the cluster specific
parameters using cluster specific data which is in line with Hsiao et al. (2019). According
to Wooldridge (2010) contemporaneous exogeneity can be exploited when the variance-
covariance of the model is diagonal as it is in each cluster.

Additionally, I also assume that the zgit is full rank.

Assumption 4.1. The matrix E[zgitz
′
git] is full rank.

5. ESTIMATION

If I rewrite the model 1.1 using backward substitution, I obtain the following expression
of the dependent regressor:

ygit = ρtgygi0 +

t∑
l=0

ρlg(α1,g + x′git−l(βg + λgit−l)) +

t∑
l=0

(ρlg)εgit−l. (5.1)

Using this result, the first lag of the dependent variable can also be rewritten as:

ygit−1 = ρt−1
g ygi0 +

t−1∑
l=0

ρlg(α1,g + x′git−1−l(βg + λgit−1−l)) +

t−1∑
l=0

(ρlg)εgit−1−l. (5.2)

It is easy to see from (5.2) that a GMM estimation ignoring the clustering structure
of the data leads to inconsistent estimates of the mean parameters. This is caused by

7According to Chamberlain (1987), the conditional moment E[s|g(w)] = 0 restriction implies that
E[g(w)s] = 0 for any function g(.) where s and w are two random variables.
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the presence of the first lag and the cluster specific effects in the right hand side of the
model causing endogeneity. Moreover, it is not possible to find an instrument that is
uncorrelated with the composite error term and correlated with the regressors. 8

Similarly, one could argue that the researcher could perform Mean Group estimation
per individual within cluster. This approach permits the estimation of the mean coef-
ficient and could be used for estimation of cluster specific parameters only if the time
dimension is bigger than the number of covariates and growing to infinity or using small
sample debiasing techniques. Thus, when the time dimension is fixed and the number of
clusters is big it would be beneficial to use another estimation strategy.

In order to fill this gap, I propose a method that allows to estimate mean cluster and
cluster specific coefficients using a two-stage procedure. This estimation technique is an
extension of the Mean-Group Estimator presented by Pesaran and Smith (1995).

The two stage procedure is the following:

First stage: In the first stage, one estimates the cluster specific coefficients by exploiting
the population moment condition for individual i within cluster g:

E[ugitzgit] = 0 ∀t ∈ (1, 2, ..., Tig ). (5.3)

Moreover, the sample moment conditions per cluster g are given by:

1

Ng
u′gZg = 0 ∀g ∈ (1, 2, ...,m). (5.4)

It is easy to see that using the sample moment conditions 5.4 as estimating equations
leads to a simple ordinary least squares estimator:

θ̂g,OLS = (Z ′gZg)
−1(Z ′gyg).

This estimator is not the most efficient since the model presents a non-homoskedastic
and non independent error term. A straightforward solution is to set a GLS estimator:

θ̂g,GLS = (Z ′gΩ
−1
g Zg)

−1(Z ′gΩ
−1
g yg),

where Ωg = E[ugu
′
g] = diag(Xg)(IK ⊗∆λg)diag(Xg) + σ2

εgINg .
I propose an estimation procedure for the unknown Ωg in Subsection 5.1.
Second stage: In the second stage, it is necessary to take the weighted mean of all

estimated parameters ending up with a Mean Cluster estimator given by:

ˆ̄θMC =

m∑
g

ŵg θ̂g,

where ŵg is an appropriate estimator of the importance of the cluster in the population,
ˆ̄θMC = [ˆ̄ρ, ˆ̄β], θ̂g = [ρ̂g, β̂g].
I propose a weighted average of the cluster specific coefficients where the weights represent
the importance of each cluster in the population.

8Ignoring cluster effects is equivalent to performing GMM estimation on the model: ∆yit = ρ∆yit−1 +
∆x′itβ + ∆uit with: ∆uit = ∆yit−1α2,g + ∆x′itα3,g + ∆x′it∆λgit + ∆εit, α2,g = ρg −E[ρg ] and α3,g =
βg − E[βg ]. Thus, we would not have available instruments.
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Remark 5.1. The difference between the Mean Cluster (MC) estimators and the Mean
Group (MG) estimator proposed by Pesaran and Smith (1995) is that the MG is obtained
by averaging the estimators for each individual in the panel while the MC averages cluster
pooled estimators.

Remark 5.2. In case of endogenous regressors, it is possible to replace the first-stage
estimation with GMM estimation using instrumental variables. In this case, identification
is done using the population moment conditions E[ugitpgit] = 0 with pgit a vector of
appropriate instruments. Moreover, for identification it is also needed to assume that
the number of instrumental variables is equal or larger than the endogenous regressors.
Finally, it is well known that OLS and FGLS estimation are special cases of GMM
estimation using the regressors as their own instruments pgit = xgit

Remark 5.3. The assumption of unobserved additive and multiplicative cluster fixed
effects allows to estimate the specific parameters by pooling observations within each
cluster. Additionally, OLS or GLS estimation is consistent under the assumptions pre-
sented in section 3 because the model is dynamic complete conditional con cluster specific
effects.

Remark 5.4. The Mean Cluster estimator is also consistent in a setting where the
proportion of observed clusters is lower than 1 and the number of clusters grows at a
slower rate than the number of individuals in the cluster. In this setting, one can assign
an equal weight to all observed clusters. The assumptions for this setting is presented in
Appendix C as well as the derivation of the statistical properties.

Remark 5.5. Another possibility could be GMM estimation on the model in first dif-
ferences using multiplicative cluster dummies when T > 2. But one could run into issues
related to weak IVs (Bun and Windmeijer, 2010).

5.1. Variance-Covariance Estimation

In order to make GLS feasible, I propose a ridge regression estimation method of the
variance-covariance components of 4λg and σ2

εg .
First, let’s consider the linear decomposition of the variance-covariance matrix for each
cluster:

Ωg =

K∑
k=1

K∑
k′=1

σλg,kk′Hg,kk′,λg + σ2
εgIng . (5.5)

with the design matrices equal to:

Hg,kk′,λg = X̃g,kX̃
′
g,k′ ,

where X̃g,k = diag(xgit,k).
Now, it is necessary to obtain a first stage estimator of the residuals for each cluster which
can be obtained using OLS estimation rgOLS = (Ing −Zg(Z ′gZg)−1Z ′g)yg = Mgwg where

Zg ∈ Rngx(K+1) is the matrix stacking up all the observations for zgit = [ygit−1 x′git]
′.

Then, it follows that:

E[rgOLSr
′
gOLS ] = MgΩgMg. (5.6)
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Replacing expression (5.5) into equation (5.6) and applying the vec operator I obtain:

vec(E[rgOLSr
′
gOLS ]) =

K∑
k=1

K∑
k′=1

σλg,kk′vec(MgHg,kk′,λgMg) + σ2
εgvec(Mg). (5.7)

Now, I can rewrite the previous expression in matrix form:

vec(E[rgOLSr
′
gOLS ]) = Bλgvec(4λg ) + σ2

εgvec(Mg). (5.8)

In order to avoid double estimation of the covariances in the variance-covariance matrix,
I use the identity vec(A) = Dvech(A) where is A is square symmetric matrix and I
re-express the previous equation as:

vec(E[rgOLSr
′
gOLS ]) = BλgDvech(4λg ) + σ2

εgvec(Mg). (5.9)

The expectation of the outer product of the residuals is replaced by the point estimator
of the OLS residuals for each cluster and I add the error νg that captures the sampling
error.

vec((rgOLSr
′
gOLS )) = BλgDvech(4λg ) + σ2

εgvec(Mg) + νg. (5.10)

Finally, notice that 5.10 is a simple linear model that can be rewritten as:

Rg = Cgηg + νg,

where:

Rg = vec(rgOLSr
′
gOLS ),

Cg = [ BλgD vec(Mg)],

Bλg = [vec(MgHg,11,λgMg) vec(MgHg,12,λgMg) ... vec(MgHg,KK,λgMg)],

ηg = [vech(4λg )′ σ2
εg ]′.

Now, the estimators of the elements of variance-covariance are obtained by minimizing
the following penalized loss function:

L(ηg) = (Rg − Cgηg)′(Rg − Cgηg) + τ ‖ ηg ‖22,
with τ ∈ [0, 2min(ζgl)] where ζgl is the eigenvalue l of the matrix C ′gCg.
The penalization term using the l2-norm allows to tackle the problem of high multi-
collinearity in the matrix C ′gCg.

C. Large and Huge Sample Size

When the sample size is big, there are problems due to memory requirements for storage
of vectorized matrices. In order to tackle this issue and reduce the computing require-
ments by half, I modify the method proposed above using the vech operator instead of
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the vec operator. It is possible to do this replacement since we are dealing with square
symmetric matrices.

Rg = vech(rgr
′
g),

Cg = [Bλ,g, vech(Mg)],

Bλg = [vech(MgHg,11,λgMg) vech(MgHg,12,λgMg) ... vech(MgHg,KK,λgMg)].

This modification improves the computational performance but has limitations. For
big samples, one needs computational algebra methods for matrix inversion and multi-
plication.

6. STATISTICAL PROPERTIES

In this section, I present the statistical properties of the cluster specific estimators, the
Mean Cluster estimator and the variance-covariance estimators using sequential asymp-
totic theory with the number of individuals per cluster (Ng) growing to infinity and the
time dimension (Tig ) fixed. This implies that the total number of observations per cluster

(ng =
∑Ng
ig
Tig ) grows to infinity.

For convenience, I use the indexes ig to refer to individual i belonging to cluster g and
tig for the time observation t of individual ig.

6.1. Cluster specific estimators

Theorem 6.1. If i) Assumptions 3.4 to 3.11 and 4.1 hold, ii) {yig , xig}
Ng

ig=1 is a sequence

of random vectors containing Tig observations ∀g, iii) Ng →∞ and Tig fixed (ng →∞),
then

a) θ̂g,GLS
p→ θg, b)

√
ng(θ̂g − θg)

d→ N(0, Qg).

where Qg = plim
ng→∞(Z ′gΩ

−1
g Zg)

−1.

6.2. Variance Covariance Estimators

Theorem 6.2. If i) Assumptions 3.4 to 3.11 and 4.1 hold, ii) plim
ng→∞

∑Ng
ig

∑Tig
tig

CgitC
′
git =

Mg with ||Mg||F < ∞. iii) νgit ∼ iid(0, σ2
ν), iv) plim

ng→∞
∑Ng
ig

∑Tig
tig

Cgitνgit = 0, v)

Ng →∞ and Tig fixed (ng →∞) then

a) Ω̂g
p→ Ωg, b)

√
ng(Ω̂g − Ωg)

d→ N(0, var(Ω̂g)).

6.3. Mean Cluster Estimator

Theorem 6.3. If i) Assumptions of theorems 6.1 and 6.2 hold ∀g, then

ˆ̄θ − θ̄ ∼ N(0, Q),

where Q =
∑
g w

2
gQg.
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7. ARE CLUSTER EFFECTS ENOUGH?

The estimator proposed in subsection 5 can have two potential biases: i) incidental pa-
rameter bias and ii) misspecification bias.

The incidental parameter bias occurs when the number of observations per group ng
is small which happens when the number of individuals per cluster is small. A solution
for this issue would be debiasing.

The estimator is also subject to misspecification bias if the assumption E[λgit|xgi, ygit−1] =
0 fails. This happens when cluster fixed effects are not enough to account for possible
correlated residual cluster-individual specific unobserved heterogeneity. Another possi-
ble source of misspecification bias occurs when the assumed coefficient structure is not
correct. We can see that βgit = βgi + λgt is also a plausible structure. In this case,
βgit = βg +λgit is not the correct specification. In order to address these issues, I present
specification tests in the following section. I also present an extension of model 1.1 that
includes cluster-individual additive effects.

Finally, I abstract from misspecification bias due to mistakes in the clustering structure
because I assume that clustering is known. This is possible when the available sample is
drawn from a population that is divided in well known clusters such as a country and
its municipalities. Examples of these type of data are longitudinal data for households,
firm-employee matched data. The clustering assumption used in this paper is different
from the one presented by Bester and Hansen (2016).

8. SPECIFICATION TESTS

In this section, I present different specification tests to check for the presence of cluster
specific effects.

First, we can check if cluster effects are enough to capture the heterogeneity in the
panel. If the number of time observations is equal to 3 or greater, I propose a Hausman
type (Hausman and Taylor (1981), Hsiao and Pesaran (2008)) test that compares a GMM
estimator of the mean parameters with the Mean Cluster estimator proposed.

More specifically, the null and alternative hypothesis are the following:
Ho : β̂MC consistent and inefficient, β̂GMM consistent and efficient.
H1 : β̂GMM inconsistent and β̂MC consistent and most efficient.
The statistic is given by:

Q = (β̂MC − β̂GMM )′V (β̂GMM − β̂MC)−1(β̂MC − β̂GMM ),

follows a χ2
df=K .

If the time dimension is larger than 3, one could replace the GMM estimator with the
MG estimator.

Similarly, testing for cluster heterogeneity could be done with a Hausman type test
that compares Pooled OLS estimator vs. a Mean Cluster estimator.

A study of the properties of the proposed tests is left for further research.

9. RELAXING THE ASSUMPTION OF CLUSTER ADDITIVE SPECIFIC
EFFECTS

In this subsection, I relax the assumption of additive cluster specific effects and allow
for the presence of additive cluster-individual correlated random effects. Therefore, As-
sumption 3.6 is replaced by the following one:
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Assumption 9.1. Correlated cluster-individual additive specific random effects α1,gi.

Inclusion of cluster-individual additive effects allows to control for endogeneity of the
regressors that might not be captured by the cluster fixed effects. In particular, I consider
the following extension of the model 1.1:

ygit = α1,gi + ρgygit−1 + x′gitβgit + εgit, t = 1, ..., Tig , (9.1)

where α1,gi is a cluster-individual specific correlated random effect.
The estimation of model 9.1 with short time dimension has two main problems: i) the

incidental parameter bias caused by the presence of the cluster-individual specific effects
and ii) the impact of unobserved initial values (ygi0) on the estimation.

In order to deal with the incidental parameter bias, I use a mean conditional approach
instead of a linear difference approach. I choose the mean conditional approach because
it is appropriate for heterogenous dynamic panel data models. As explained by Hsiao
(2020), in this approach it is needed to use a linear approximation of E(αgi|xit) to model
the correlation of the regressors with the cluster-individual unobserved effects (This was
a suggestion of Mundlak (1961) and Chamberlain (1979)). Following this suggestion, I
re-express α1,gi as a linear projection on the individual means of the regressors:

α1,gi = x̄′gi.πg + υgi, (9.2)

where x̄gi. = T−1
∑T
t=1 xgit, υgi is an orthogonal error term such that E(υgi|x̄gi.) = 0

and πg is a vector of unobserved parameters.
This linear projection can be replaced in model 9.1:

ygit = α1,gi + ρgygit−1 + x′gitβgit + εgit, t = 1, ..., Tig . (9.3)

Now, it is only left the issue of the unobserved initial conditions. If I assume that the
initial conditions are generated from the long-term mean, I can write them as:

ygi0 =
αgi

1− ρg
+ ε0. (9.4)

Now, I can replace the linear projection of the individual effects on the individual mean
of the regressors to obtain:

ygi0 =
x̄′gi.πg

1− ρg
+

υgi
1− ρg

+ ε0. (9.5)

The combination of 9.3 and 9.5 leads to the system of equations:

ygit = x̄′gi.πg + ρgygit−1 + x′gitβgit + ε∗git, t = 1, ..., Tig ,

ygi0 =
x̄′gi.πg

1− ρg
+

υgi
1− ρg

+ ε0. (9.6)

where ε∗git = εgit + υgi.
The likelihood of the observed data is given by:
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Lζ|y,y−1,X =

m∏
g

Ng∏
i

L(ζg|ygi), (9.7)

where ζg = [ρg, βg, φg, σ
2
ε∗ ], ζ = [ζ1, ζ2, ..., ζm], L(ζg|ygi) = f(ygi|ζg) with f(ygi|ζg)

representing a multivariate normal distribution with variance equal to σ2
εIT + σ2

υιT ι
′
T

and with expectation equal to µy,gi = ρgygi−1 + diag(xgi)βgi + ιTig x̄
′
gi.πg.

The prior distributions for the fixed parameters are:

(βg|β) ∼ N(β,H∆α,2H
′
∆α,2

),

(ρg|ρ) ∼ N(ρ, σ2
ρ),

(πg|π) ∼ N(π, FF ′).

While the prior for the random effects is:

λgit ∼ N(0, H∆λ
H ′∆λ

),

H∆λ
∼ LKJ(2).

The prior distribution of the variance σ2
ε is half-normal with location parameter equal

to 0.5 and scale parameter equal to 0.2. The prior distribution of the lower triangular
matrix H∆λ

is Lewandowski-Kurowicka-Joe (LKJ) with parameter equal to 2. The value
of the parameter of the LKJ prior means that the matrix has low correlation.

Notice that the prior set-up imposes a non-centered parametrization on βgit such that:

βgit = βg +H∆λ
zgit, (9.8)

where zgit is a multivariate standard normal variable and H∆α,2 is the Cholesky factor
of the variance-covariance matrix of λgit.

This non-centered parameterization improves the convergence of the Hamiltonian Monte
Carlo (HMC) algorithm because it reduces the correlation of the parameters (Frühwirth-
Schnatter and Tüchler, 2008; Betancourt and Girolami, 2013). This reduction of the
correlation permits the exploration of the whole parameter space improving the mixing
of the chains.

Under the simplifying assumption that ygi0 is known, we could just set up a naive
Bayesian estimator. But the assumption that ygi0 is fixed is not plausible. Its failure
leads to inconsistent estimates. This is why, I relax it and set up the following prior
distribution for the initial conditions:

fygi0 ∼ N(µ0,gi, σ
2
y0), (9.9)

where µ0,gi =
αgi

1−ρg and the prior distribution of the variance σ2
y0 is half-normal with

location parameter equal to 0.5 and scale parameter equal to 0.2.

Remark 9.1. Assuming that ygi0 comes from the stationary distribution means that
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the initialization of the process happened a long time ago (hig →∞). This implies that
the parameter bg is equal to 0.

Remark 9.2. According to Rossi and Allenby (2009) and Rendon (2013), imposing
prior distributions only for the parameters of the model leads to a fixed effects specifi-
cation. Thus, there is not any prior specification for the hyper-parameters of the priors.
Therefore, a Bayesian model for a fixed effects specification has only first-stage priors
while a Bayesian model for a random effects specification includes second stage or hyper-
priors.

9.1. INITIAL CONDITIONS: A MORE FLEXIBLE PRIOR?

A failure in the assumption of the DGP of ygi0 causes invalid inference and inconsistent
estimates. In order to relax the assumptions 3.8 and 3.9, I assume that ygi0 is unknown
and that it does not come from the stationary distribution. This is done in order to avoid
making assumptions regarding the exogenous regressors. As explained by Heckman (1987)
and stated in 3.9, we need to make assumptions about the stationarity of the explanatory
regressors and rule out time and age trends when the initial conditions are generated form
the stationary process.

In order to propose a prior that does not constraint the unconditional stationary
distribution, I propose the following joint prior: y0

θ

 ∼ N
 ιmNT ⊗ µy

ιmNT ⊗ θ̄
, Σy,θ

 ,

with:

Σy,θ =

σ2
y0ImN Σy0,β σy0,ρ

Σy0,β Σβ 0
σy0,ρ 0 Σρ

 .

A similar idea was presented by Sims (2000) and Heckman (1987). They defined a joint
prior for the initial conditions and the coefficient vector.

Implementation of a Bayesian estimator is not straightforward due to the correlations
between the initial conditions and the parameters of interest and the unknown initial
values and I leave it for further research.

10. HOW ABOUT CROSS-SECTIONAL DEPENDENCE?

10.1. A model including common global factors

The models 1.1 and 9.1 do not consider cross-sectional correlation even though cross-
sectional dependence is a common problem in panel data.

Cross-sectional dependence is caused by spatial dependence or common shocks ( Bai
and Li (2021)) and it can be modelled either using spatial or factor models or a combi-
nation of both.

In this section, I extend model 1.1 in order to allow for cross-sectional dependence
using a factor model. For this purpose, I include a cluster-time specific fixed effect since
it represents a cluster common factor. This is possible because the cluster-time specific
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effect τgt can be rewritten as
∑Ng
ig

Λ′igfgt with factor loadings equal to 0 or 1 (Bonhomme

and Manresa (2015), Kapetanios et al. (2017), Bai and Li (2021)).
Additionally, I include time specific effects that capture correlation across clusters.

Once more following Bonhomme and Manresa (2015) and Kapetanios et al. (2017), it is

possible to re-express time specific effects as γt =
∑N
i F

′
gft with Fg representing factor

loading g that takes value 0 or 1.
The extended model 1.1 includes cluster-time additive effects as well as time fixed

effects as common factors:

ygit = αg + γt + τgt + ρgygit−1 + x′gitβgit + εgit, t = 1, ..., Tig , (10.10)

In this setting, Assumption 3.9 is also relaxed to include the common factors:

Assumption 10.1. xgit are generated from:

xgit = µg + γt + τgt + ρxxgit−l + ωgit, |ρx| < 1.

10.2. Identification and Estimation

The Mean Cluster estimator presented in section 5 estimates consistently the parameters
of interest of model 10.10 with the simple modification of inclusion of time and cluster-
time dummies by exploiting the different moment conditions derived in this subsection.

We can obtain moment conditions using the deviations with respect to cluster-time
specific averages:

ygit − yg.t = ρg(ygit−1 − yg.t−1) + (xgit − xg.t)′βg
+ x′gitλgit − x′g.tλg.t + εgit − εg.t.

(10.11)

Where the cluster-time specific averages are equal to:∑
i ygit
Ng

= αg + γt + τgt + ρg

∑
i ygit−1

Ng
+

∑
i xgit
Ng

βg +

∑
i x
′
gitλgit

Ng
+

∑
i εgit
Ng

. (10.12)

We can just rename the transformed variables as:

ỹgit = ρg ỹgit−1 + x̃′gitβg + x̃′gitλgit + ε̃git. (10.13)

Thus, after this transformation we obtain the following moment conditions:

E(ũgitx̃gis) = 0 ∀s ∈ (1, 2, ..., T ), i ∈ (1, 2, ..., Ng), g ∈ (1, 2, ...,m), (10.14)

E(ũgitỹgit−1) = 0 ∀t ∈ (1, 2, ..., T ), i ∈ (1, 2, ..., Ng), g ∈ (1, 2, ...,m). (10.15)

Assumption 10.2. The matrix E(z̃gitz̃
′
git) is full rank.

11. MONTE CARLO EXPERIMENT

In this section, I present a Monte Carlo simulation experiment performed to test the
proposed estimators for the baseline model and the extensions of the baseline.

For this purpose, I generate 100 datasets from three different data generating processes
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called DGP 1, DGP 2 and DGP 3. I use these datasets to test the proposed Mean Cluster
estimators that are appropriate for DGP 1, the Bayesian estimator proposed for DGP 2
and the Mean Cluster estimator using the time demeaned variables for DGP 3.

In the following subsections I describe the Monte Carlo simulation design with more
detail as well as the results.

11.1. The design

11.1.1. DGP 1 In order to test the estimation method proposed for model 1.1, I conduct
a simulation experiment using a data generating processes that is similar to the DGP
used by Hsiao et al. (1998). 9

The main differences with the DGP of Hsiao et al. (1998) are: 1. inclusion of cluster ef-
fects instead of individual specific effects, 2. inclusion of multiplicative cluster-individual-
time specific effects, 3. inclusion of correlated cluster specific effects, 4. the variance and
variance-covariance are cluster specific and they are generated from Gamma and Wishart
distributions. 10

In particular, the DGP 1 is :

ygit = α1,g + ρgygit−1 + x′gitβgit + εgit,

with ρg = ρ̄+ α2,g, ρ̄ = 0.6, βgit = β̄ + α3,g + λgit and β̄ =

(
0.5
0.8

)
.

The cluster effects αj,g are generated from a normal distribution centered at 0 and with
variance equal to σ2

α,jg. The cluster specific variance σ2
α,jg is sampled from a Gamma

distribution with an inverse scale parameter equal to 1 and a shape parameter equal to
1.

The cluster effects added to the mean coefficient vector are generated from a multi-
variate normal distribution centered at 0 and with full variance-covariance matrix that is
cluster specific. This variance-covariance matrix is sampled from a Whisart distribution

with full scale matrix Vα,3 =

(
0.2 0.1
0.1 0.2

)
and with 3 degrees of freedom.

The cluster-individual-time specific effects added to the mean coefficient vector are gen-
erated from a multivariate normal distribution centered at 0 with a variance covariance
matrix that is cluster specific and sampled from a Wishart distribution. This Wishart

distribution is parametrized by a full scale matrix Vλ =

(
0.2 0.1
0.1 0.2

)
and 3 the degrees of

freedom.
The disturbance term is generated from a normal distribution centered at 0 with a

cluster heteroskedastic variance. The variance is sampled from a Gamma distribution
inverse scale and shape parameters equal to 1.

The regressors xgit follow a stationary autoregressive processes similar to the process
used by Hsiao et al. (1998). The key difference is that I allow for correlation with the
cluster effects:

xgit = µg(1− φ) + φxgit−1 + α1,g + α3,g + ωgit,

9I use modification of the DGP proposed by Hsiao et al. (1998) because the MG estimator is one of
the most standard methods for estimation of dynamic heterogeneous panel data models.
10Detailed results of the simulation experiment are presented in Appendix D.
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with µg ∼ N(ιK , σ
2
µ,gIK), and σ2

µ,g ∼ Gamma(sµ, isµ) where sµ = 1 is the inverse scale
parameter and isµ = 1 is the shape parameter.

The disturbance term of the regressors equation is sampled from the a normal distri-
bution centered at 0 with variance that is cluster specific and generated from a Gamma
distribution with scale parameter and shape parameters equal to 1.

11.1.2. DGP 2 In order to test the Bayesian estimator proposed for model 9.6, I mod-
ified DGP 1 by replacing the additive cluster specific effects with cluster-individual ad-
ditive effects. The sample size is equal to 2 clusters, 50 individuals and 3 time periods.

11.1.3. DGP 3 In order to test the proposed estimator for the model presented in
Section 10 I generate data from the following DGP with one common factor that is
cluster specific and one common factor that affects the whole population:

ygit = α1,g + ρgygit−1 + x′gitβgit + Λgft + Λgifgt + εgit,

xgit = µg(1− φ) + φxgit−1 + α1,g + α3,g + Fgft + Fgifgt + ωgit,

The factor loadings Λg, Λgi, Fg and Fgi are equal to 1. The common factors are
stationary and generated as:
ft = 0.6ft−1 + εf
fgt = 0.6fgt−1 + εfg
with E[εf ] = 0, E[ε2f ] = 0.04, E[εfg ] = 0 and E[ε2fg ] is cluster specific and generated

from a sigma distribution with scale and location parameters equal to 1.

11.2. The Results

11.2.1. DGP 1 In Table 1, I present the bias (relative bias*100 below the bias) and
RMSE of the estimated mean parameters of interest. The estimates are obtained for 100
simulations for a sample with 10 groups, 100 individuals per group and time dimension
equal to 3. The results are striking and demonstrate the power of the simple method
presented.

Additionally, I performed the simulation experiment with different sample sizes varying
the number of groups and the number of individuals per group. I present the results in
Figures 1 to 8. In Figures 1 to 4, I plot the relative bias and the RMSE of the estimated
mean parameters as a function of the number of individuals per cluster with the number
of clusters equal to 2 and time observations equal to 3 and 6. In Figures 5 to 8, I plot
the relative bias and the RMSE for the mean parameters s a function of the number
of clusters and the number of individuals per cluster equal to 50 and time observations
equal to 3 and 6.

The results show that when the data is balanced, the proposed Mean Cluster estimators
have lower relative bias and RMSE than the Pooled OLS when the number of individuals
within cluster grows or when the number of clusters grow. In particular, when the time
dimension is equal to three the Mean Cluster OLS estimator has lower relative bias than
OLS for all parameters. But the RMSE of the Mean Cluster OLS is close to the RMSE
of OLS. This can be explained by the fact that in the Mean Cluster OLS we ignore the
variance-covariance of the model.

When the data is weakly unbalanced, the proposed Mean Cluster estimators have lower
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RMSE than the Pooled OLS if the time dimension is fixed and the number of individuals
in the cluster grows. When the data is strongly unbalanced the best estimator is the
Mean Cluster Pooled OLS. Morever, the Mean Cluster FGLS estimator does not perform
correctly with strong unbalancedness. Finally, the Mean Cluster FGLS estimation does
not perform well when time dimension is equal to 3 (The graphs of the simulation for
unbalanced data for DGP 1 are presented in the Appendix D).

11.2.2. DGP 2 The simulation results for DGP 2 are presented in Table 2. They show
that inclusion of the prior information of the initial observations produces estimates with
low bias. The RMSE of the estimated autoregressive parameter is low but the RMSE
of the slope coefficients is high. One reason for the high RMSE of the estimated slope
coefficients could be the correlation between slope coefficients. These correlation impedes
the convergence of the Hamiltonian Monte Carlo Algorithm. The reason is that the under
the presence of parameter correlation, the HMC algorithm cannot explore efficiently all
the posterior parameter space. A solution could be the implementation of a block Gibs
sampler.

11.2.3. DGP 3 The results show that when the data is balanced, the proposed Mean
Cluster estimators have lower RMSE than the Pooled OLS when the number of individ-
uals within cluster grows or when the number of clusters grow (Graphs 13 to 12).

In all DGP, the Mean Cluster estimators seem unstable when the number of clusters
is equal to 2. This is natural because the ratio of observed number of clusters is small
with respect to the number of clusters. This happens because in the Monte Carlo experi-
ment design I assume that the cluster specific parameters follow a continuous probability
distribution. This means that one needs an increasing number of clusters to estimate
correctly the mean cluster parameters. In this setting, it is clear that it not possible to
learn anything from the global mean.

Table 1: Results Simulation DGP 1.

Pooled OLS Mean Cluster OLS Mean Cluster FGLS
τ = 0 τ = 1

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
ρ

0.27 0.28 0.00 0.04 -0.01 0.04 0.00 0.06
45.71 0.55 -1.26 -0.46

β1

-0.22 0.35 0.11 0.35 -0.03 0.50 -0.02 0.57
-44.44 21.61 -5.66 -3.42

β2

-0.39 0.47 0.03 0.28 0.01 0.54 0.00 0.50
-49.20 3.64 0.65 0.33

Note: τ represents the vaule of the regularization parameter used for estimation

of the variance covariance components (See subsection 5.1).
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Table 2: Results Simulation DGP 2

ρ β1 β2

Bias Bias% RMSE Bias Bias% RMSE Bias Bias% RMSE

0.05 7.83 0.07 0.03 6.08 0.34 0.03 4.11 0.33
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Figure 1: DGP 1: Relative Bias of estimated parameter as a function of the number of
individuals per cluster with fixed m = 2, T = 3 (Balanced Panel).

Figure 2: DGP 1: Relative Bias of estimated parameter as a function of the number of
individuals per cluster with fixed m = 2, T = 6 (Balanced Panel).
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Figure 3: DGP 1: RMSE of estimated parameter as a function of the number of individuals
per cluster with fixed m = 2, T = 3 (Balanced Panel).

Figure 4: DGP 1: RMSE of estimated parameter as a function of the number of individuals
per cluster with fixed m = 2, T = 6 (Balanced Panel).
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Figure 5: DGP 1: Relative Bias of estimated parameter as a function of the number
clusters with fixed Ng = 50, T = 3 (Balanced Panel).

Figure 6: DGP 1: Relative Bias of estimated parameter as a function of the number
clusters with fixed Ng = 50, T = 6 (Balanced Panel).
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Figure 7: DGP 1: RMSE of estimated parameter as a function of the number clusters
with fixed Ng = 50, T = 3 (Balanced Panel).

Figure 8: DGP 1: RMSE of estimated parameter as a function of the number clusters
with fixed Ng = 50, T = 6 (Balanced Panel).
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Figure 9: DGP 3: Relative Bias of estimated parameter as a function of the number
clusters with fixed Ng = 50, T = 3 (Balanced Panel).

Figure 10: DGP 3: Relative Bias of estimated parameter as a function of the number
clusters with fixed Ng = 50, T = 6 (Balanced Panel).
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Figure 11: DGP 3: RMSE of estimated parameter as a function of the number clusters
with fixed Ng = 50, T = 3 (Balanced Panel).

Figure 12: DGP 3: RMSE of estimated parameter as a function of the number clusters
with fixed Ng = 50, T = 6 (Balanced Panel).
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Figure 13: DGP 3: Relative bias of estimated parameter as a function of the number
clusters with fixed m = 2, T = 3 (Balanced Panel).

Figure 14: DGP 3: Relative bias of estimated parameter as a function of the number
clusters with fixed m = 2, T = 6 (Balanced Panel).
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Figure 15: DGP 3: RMSE of estimated parameter as a function of the number clusters
with fixed m = 2, T = 3 (Balanced Panel).

Figure 16: DGP 3: RMSE of estimated parameter as a function of the number clusters
with fixed m = 2, T = 6 (Balanced Panel).
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12. EMPIRICAL APPLICATION

In this section, I present an empirical example in order to illustrate the use of the methods
presented. In particular, I use the Mean Cluster estimators to estimate the effect of
enrollment of private school on the achievement of students.

12.1. Estimation of a value-added model of learning

In this example, I investigate the causal effect of private school on student achievement.
Andrabi et al. (2011) studied this effect using a value-added model of learning and em-
phasized the importance of persistence. They used a data set obtained by means of a
cluster sampling scheme. They surveyed 4031 students to obtain information on anthro-
pometrics, and family characteristics in each period. More specifically, they consider the
following value-added model for student i in period t:

scoreit = αi + ρscoreit−1 + βprivateit + x′itθ + εit (12.1)

with:
αi representing the individual specific effect,
scoreit is the score of mathematics for student i in period t,
privateit is a dummy variable taking value 1 if student i is enrolled in a private school
in period t,
xit is a vector of control variables for student i in period t.

The authors faced three main empirical challenges: i) the time dimension is equal to
3, ii) the scores of Mathematics, Urdu, and English have measurement error causing
autocorrelation of order 1 in the disturbance term and iii) the presence of individual
specific unobserved heterogeneity. In order to eliminate the individual specific effects,
the authors first-differenced the model. But first-differencing the model in combination
with the autocorrelation of the disturbance term leaves no extra lags of the dependent
variable to perform GMM estimation with instrumental variables. As a result, they use
the score of other subjects as instrumental variables under the key assumption that
the measurement error is uncorrelated across subjects. But a failure of this assumption
invalidates their identification strategy.

In order to avoid making the assumption of non-correlation of the scores across sub-
jects, I propose an alternative strategy that uses a model in levels with heterogeneous
effects of private school on achievement across villages. This could be plausible if village
characteristics have an effect on students achievements. For instance, it is possible that
students in richer villages have higher effects. Additionally, I allow for the presence of
common global factors as well as a common cluster factor in order to capture cross-
sectional dependence of students within villages and across villages. More specifically, I
propose the following extended value-added model for student i in cluster g at period t
is given by:

scoregit = αgi + τgt + γt + ρgscoregit−1 + βgprivategit + x′gitθg + εit (12.2)

where αgi is a cluster-individual specific effect, τgt represents a common cluster effect,
and γt represents a common global factor.

In this new model, I deal with the cluster-individual specific effects by following Mund-
lack approach by projecting them into the cluster-individual specific means of the regres-
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sors such that αgit = z̄′gi.πg+ωgi with z̄gi =
∑
t zgit
T and zgit contains the control variables

and private school. Additionally, I time demean the dependent variable and the regres-
sors following the identification strategy presented in subsection 10.2 such that we end
up with the model:

scoregit − ¯scoreg.t = ρg(scoregit−1 − scoreg.t−1) + βg(privategit − privateg.t)
+(xgit − x̄g.t)′θg + (z̄gi. − z̄g.)′πg + εgit − ε̄g.t + ωgi − ω̄g..

(12.3)
In this transformed model, the endogeneous regressors are the time demeaned lag of

the dependent variable and the time demeaned private school. Without first differencing
the model, it is possible to identify the parameters of interest using the second lag of
the time demeaned dependent variable and the time demeaned private school. Therefore,
in the first stage I estimate the parameters of interest using 2SLS estimation and in
the second stage I use the Mean Cluster estimator with a sample composed of the 112
villages clustered by district (I assign equal weights to each village). The estimated
average persistence parameter is 0.65, and the average effect of private school on scores
is 0.34 standard deviations. The estimated persistence parameter and private school
effects using the Mean Cluster estimation are slightly larger than the ones obtained using
pooled 2SLS controlling for the presence of individual effects with Mundlack approach
(The estimated persistence parameter is equal to 0.66 and the estimated effect of the
private school equal to 0.30 standard deviations). Using a Hausman type test comparing
the pooled 2SLS with the Mean Cluster estimated parameter, I reject the null hypothesis
in favor of the alternative one that there is village heterogeneity. Nevertheless, the results
obtained from the test proposed must be taken with precaution since I do not investigate
its statistical properties in this paper.

Additionally, I performed the estimation using villages as clusters. I use the 69 largest
villages (villages with more than 100 students surveyed). In this case, the average esti-
mated persistence parameter is equal to 0.63 and the average slope coefficient of private
school is 0.40 standard deviations. The differences between district estimates and village
estimates can be explained by the differences in the samples used for estimation.

The estimated persistence parameter using the mean cluster estimator is larger than
the estimated value (0.12) presented by Andrabi et al. (2011). The estimated effect of
private school on math score using Mean Cluster estimator is lower than the estimated
value (0.40) of Andrabi et al. (2011). Additionally, the estimated effects using the Mean
Cluster estimator are very similar to the estimated long run effects (0.31) using DID
approach presented by Andrabi et al. (2011).

13. CONCLUSIONS

In this paper, I investigate the identification and estimation of dynamic heterogeneous
linear models in the presence of cluster heterogeneity when cluster structure is known
and panel data is unbalanced due to randomly missing data with short or fixed time
dimension.

In order to exploit the structure of the data, this article proposes two approaches
depending on the growth of the number of clusters. When the number of clusters is fixed,
we observe all the clusters and the number of individuals grows to infinity, it is possible
to estimate the mean slope coefficients and persistence parameter using a Mean Cluster
estimator that is an extension of the Mean Group estimator introduced by Pesaran and
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(a) Persistent parameter (b) Private School Slope Coefficient

Figure 17: 2 Estimated Cluster Heterogenous Coefficients
Note: Estimated cluster specific parameters for 69 largest villages.

Smith (1995). When the number of clusters is growing at a lower rate than the growth
of the number of individuals within a cluster, the Mean Cluster estimators estimates
consistently the mean parameters.

As an extension of the baseline model, I consider a model with cluster-individual
additive effects. In this setting, I suggest a hierarchical Bayesian estimator with a prior
for the unknown initial conditions.

A second extension is a model that allows for cross-sectional dependence by including
a common factor for the whole population and a cluster specific common factor. In this
setting, the Mean Cluster OLS estimator outperforms pooled OLS.

I can conclude from the simulation experiment, that the Mean Cluster estimators have
lower RMSE than the MG estimator. This shows that one can exploit the underlying
clustering in the data to estimate the mean coefficients and the cluster specific parameters
of heterogeneous linear dynamic panel data models.
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14. APPENDIX A: PROOFS OF THEOREMS 1,2,3

14.1. Proof Theorem 1

Proof. It is known that:

θ̂g,GLS = θg + (Z ′g(Ω
−1
g )Zg)

−1(Z ′g(Ω
−1
g )ug),

with:

ug = diag(Xg)λg + εg.

The presence of the lagged dependent variable in the left hand side of our model causes
a bias of order (ng)

−1 in θ̂g,GLS :

E(θ̂GLS,g − θg) = Kg,ng +Op(n
−3/2
g ) = Op(n

−1
g )

I present the derivation of Kg,ng in Appendix B.
Now, by assumption 3.2 we know that as N goes to infinity, ng →∞.
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√
ng(θ̂g − θg) ∼ N(0, Qg),

where Qg = plim
ng→∞(Z ′g(Ω

−1
g )Zg)

−1.
Thus, we can take advantage of the third dimension and still obtain an unbiased estimator
even if Tig is fixed because Ng grows to infinity with the total number of individuals.

14.2. Proof Theorem 2

Proof. As mentioned in section 5.1, the variance-covariance components stacked up in
the vector ηg and estimated with a penalized LS approach as (C ′gCg + τI)−1(C ′gR̂g) with
Cg a full rank matrix obtained following the procedure proposed there. Now, for τ = 0:

√
ng(η̂g − ηg) = (

1

ng

Ng∑
i

Tig∑
t

CgitC
′
git)
−1(

1
√
ng

Ng∑
i

Tig∑
t

Cgitνgit).

Then, under assumption 13:

√
ng(η̂g − ηg) d→(0, σ2

ugQ
−1
g ).

Now, since Ωg = g(4λg , σ2
εg ) and g(.) is a continuous function because it is a linear

decomposition it is possible to use the Slutzky theorem to show that:
√
ng(Ω̂g − Ωg) d→(0, var(Ω̂g)).

14.3. Proof Theorem 3

Proof. This follows from the property of sum of normal distributed vectors.

15. APPENDIX B: BIAS DERIVATION OF θ̂G

In order to derive the bias of θ̂g, I follow Kiviet and Phillips (1993) and Grubb and
Symons (1987) and express the dependent variable for each individual as:

ygi = F̃gygi0 + C̃gXgiβg + C̃gX̃giλgi + εgi, (15.4)

where:

ygi =



ygi0
ygi1
ygi2
ygi3
...

ygiT−1


, F̃g =



1
ρg
ρ2g
ρ3g
...

ρT−1
g


,xgi =



xgi1
xgi2
xgi3
xgi4
...
xgiT


,C̃g =



0 0 0 .... 0
1 0 0 ... 0
ρg 1 0 ... 0

ρ2g ρg 1 ... 0

.....

ρT−1
g ρT−2

g 1 ... 0


,λgi =



λgi1
λgi2
λgi3
λgi4
...
λgiT


, εgi =



εgi1
εgi2
εgi3
εgi4
...
εgiT


.

If I stack up individual vectors in a group one, I obtain:

yg = Fgyg0 + Cgxgβg + CgX̃gλg + εg, (15.5)

where:
Fg = diag(F̃g),

Cg = diag(C̃g),

X̃g = diag(X̃gi),
Also, I know that the estimator per cluster is given by:
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θ̂ = (Z ′gΩ
−1
g Zg)

−1(Z ′gΩ
−1
g y),

with Zg = [yg−1Xg].
Now, I can define:

E[Zg] = Z̄g + Cguge
′
1,

where Z̄g = [Fgygo CgXg].
Then, the bias of the estimator is given by:

E[θ̂g − θg] = E[(Z ′gΩ
−1
g Zg)

−1(Z ′gΩ
−1
g ug)],

with Zg = [yg−1 Xg].
Following ?, I find that:

E[θ̂g − θg] = −(Z̄ ′gΩ
−1
g Z̄g)

−1[Z̄ ′gΩ
−1
g CgZ̄g(Z̄

′
gΩ
−1
g Z̄g)

−1e1+

e1tr((Z̄
′
gCgΩ

−1
g Z̄g)

−1Z̄g)(Z̄
′
gΩ
−1
g Z̄g)

−1+

e1e
′
1(Z̄ ′gΩ

−1
g Z̄g)

−1e1E[U ′gC
′
gΩ
−1
g CgUgU

′
gC
′
gΩ
−1
g Ug)] + o(n−1

g )

(15.6)

This can be rewritten as:

E[θ̂g − θg] = Kg,ng + op(n
−1
g ) = Op(n

−1
g ) = op(1)

16. APPENDIX C: CORRELATED CLUSTER EFFECTS FRAMEWORK

In this appendix, I present the model assumptions for a setting with cluster correlated
effects. The identification and estimation strategy proposed in sections 4 and 5are still
valid. Nevertheless, the asymptotic distribution of the Mean Cluster estimator is different
as the one presented in section 6. Therefore, I also present the derivation of the asymptotic
distribution of the mean cluster estimators.

16.1. Correlated cluster effects framework

Assumption 16.1. The proportion of observed clusters q converges to 1.

Assumption 16.2. The number of clusters m is a monotonic function of ng,
√
m
ng
→ 0

and m(ng)→∞.

Assumption 16.3. Cluster-specific persistence parameter

ρg ∈ (−1, 1),

ρg = ρ̄+ α1,g,

E[α2
1,g] = σ2

α1,g
.

The cluster specific persistence parameter ρg ∈ (−1, 1) is decomposed into two parts:
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E[ρg] = ρ̄ that is the mean persistence parameter and α1,g that captures the heterogeneity
across clusters.

Assumption 16.4. Cluster-individual-time specific coefficients

βgit = β̄ + α2,g + λgit,

E[α2,gα
′
2,g′ ] =

{
∆α2,g

if g = g′

0 otherwise.
,

E[λgitλ
′
g′i′t′ ] =

{
∆λg if g = g′, i = i′andt = t′

0 otherwise.
,

The unobserved coefficient vector is given by βgit ∈ RK and is equal to β̄ + α2,g + λgit
where β̄ is the mean coefficient vector, α2,g captures the heterogeneity across clusters and
λgit captures the additional multiplicative heterogeneity over time for each individual of
cluster g.

Assumption 16.5. Correlated cluster specific effects with covariates.

E(αg|xgi1, xgi2, ..., xgit, ygit−1) 6= 0.

The cluster specific random components are conditionally dependent to the covariates
allowing for correlated random coefficients at the cluster level.

Assumption 16.6. No correlation of cluster-individual-time effects with the covariates.

E(λgit|xgi1, xgi2, ..., xgiT , ygit−1) = 0.

In this assumption, I state that the residual multiplicative heterogeneity is not correlated
to the covariates. This implies that E[βgit|xgi1, xgi2, ..., xgiT , ygit−1] = βg.

Assumption 16.7. Non cross correlation between specific effects random components.

(αm,gλ
′
git) = 0 for m ∈ {1, 2} and ∀g, t, i.

In this assumption, I state that the group-individual-time specific effect is not cross
correlated to the group heterogeneity.

16.2. Asymptotic behaviour of Mean Cluster Estimator

Theorem 16.1. Under assumptions presented in the previous subsection, ˆ̄θ is a consis-
tent and normal distributed estimator.

√
m(ˆ̄θ − θ̄) ∼ N(0,4α).
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Proof. It is known that:

θ̂g,GLS = θ̄ + αg + (Z ′gΩ
−1
g Zg)

−1(Z ′gΩ
−1
g wg),

θ̂g,GLS = θ̄ + αg + ξg,

with:

wg = X̃gdiag(ITig )λgi + εg.

The presence of the lagged dependent variable in the left hand side of our model causes
a bias of order (ng)

−1 in θ̂g,GLS :

E(θ̂GLS,g − θg) =
Kg,ng

ng
+Op(n

−3/2
g ) = δg,ng .

Thus, we can rewrite the mean-cluster GLS estimator as:

ˆ̄θ = θ̄ +
1

m

m∑
g

αg +
1

m

m∑
g

(ξg − δg,ng ) +
1

m

m∑
g

δg,ng ,

√
m(ˆ̄θ − θ̄) =

1√
m

m∑
g

αg +
1√
m

m∑
g

(ξg − δg,ng ) +
1√
m

m∑
g

δg,ng ,

√
m(ˆ̄θ − θ̄) =

1√
m

m∑
g

αi +
1√
m

m∑
g

(ξg − δg,ng ) +

√
m

ng
(

1

m

m∑
g

Kg,ng ) +Op(

√
m

n
3/2
g

).

Now, using assumption 12 we have that:

√
m(ˆ̄θ − θ̄) ∼ N(0,4α).

17. APPENDIX D: EXTENDED MONTE CARLO EXPERIMENT

17.1. The design

The sample sizes are m ∈ {2, 3, ..., 10} with Ng ∈ {50, 51, ..., 150} and Tig ∈ {3, 6}.
Additionally, the data is generated with two different patterns of random unbalanced-

ness. The first one is weak and the second is strong (See table ??). The unbalancedness
level is measured by the following three measures that are an extension of the ones
presented by H. Baltagi et al. (2001):

c1 = m/N̄
∑
g

(1/Ng),

with N̄ =
∑
g Ng/m.

c2 = N/T̄
∑
g

∑
ig

(1/Tig ),

with N =
∑
g Ng, T̄ =

∑
g

∑
ig
Tig/N .
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c3 = NT/N̄T
∑
g

∑
ig

(1/NgTig ).

with N̄T =
∑
g

∑
ig

(1/NgTig )/N .

These measures take value 1 when the three level panel data is fully balanced and
they decrease with higher levels of unbalancedness. The unbalancedness patterns are
presented in Table 3. For instance, in row weak-a the sample has 2 clusters with 26 and
12 individuals. The cluster with 26 individuals has 9 individuals with 3 time observations
and 17 individuals with 6 time observations.

Table 3: Unbalancedness patterns and sample sizes

Unbalanced Pattern c1 c2 c3 m Ng Tig

None 1 1 1 2 50 3
None 1 1 1 2 50 6
Strong 0.4756 1 0.6560 2 1(50), 1(8) 3
Weak 0.8733 .77 0.6737 2 1(40), 1(19) 34(6), 16(2)
Weak 0.8733 1 0.8876 2 1(40), 1(19) 3
Strong 0.4756 0.7509 0.5187 2 1(50), 1(8) 12(5), 12(2),26(6)
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17.2. Results

Figure 18: DGP 1: RMSE of estimated parameters as a function of the number individuals
per cluster with fixed m = 2, T = 3 (Weak unbalanced Panel).

Figure 19: DGP 1: RMSE of estimated parameters as a function of the number individuals
per cluster with fixed m = 2, T = 6 (Weak unbalanced Panel).
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Figure 20: DGP 1: RMSE of estimated parameters as a function of the number individuals
per cluster with fixed m = 2, T = 3 (Strong unbalanced Panel).

Figure 21: DGP 1: RMSE of estimated parameters as a function of the number individuals
per cluster with fixed m = 2, T = 6 (Strong unbalanced Panel).
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Figure 22: DGP 1: RMSE of estimated parameters as a function of the number of cluster
with fixed Ng = 50, T = 3 (Weak unbalanced Panel).

Figure 23: DGP 1: RMSE of estimated parameters as a function of the number of clusters
with fixed Ng = 50, T = 6 (Weak unbalanced Panel).
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Figure 24: DGP 1: RMSE of estimated parameters as a function of the number of clusters
with fixed Ng = 50, T = 3 (Strong unbalanced Panel).

Figure 25: DGP 1: RMSE of estimated parameters as a function of the number of clusters
with fixed Ng = 50, T = 6 (Strong unbalanced Panel).


