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Summary This paper investigates the identification and estimation of dynamic
heterogeneous linear models for unbalanced panel data at the cluster level when the
clustering structure is known, and the number of time periods is short (greater than or
equal to 3). For this purpose, we use a linear panel data model with additive cluster
fixed effects and a mixed coefficient structure composed of cluster-specific fixed effects
and random cluster-individual-time specific effects. We propose a Mean Cluster-FGLS
estimator and a Mean Cluster-OLS estimator to estimate the mean coefficients. In order
to make the GLS estimation of the cluster-specific parameters feasible, we introduce
a ridge estimator of the variance-covariance matrix of the model. The Mean Cluster
estimators are consistent: i) under stratified sampling when the number of clusters is
fixed, the proportion of observed clusters is equal to 1, and the number of individuals
per cluster grows to infinity, or ii) under cluster sampling when the square root of
the number of clusters grows at a slower rate than the growth rate of the number of
individuals per cluster. In addition, we present two extensions of the baseline model.
In the first one, we allow for cluster-individual specific fixed effects instead of cluster
additive fixed effects. In this setting, we propose a Hierarchical Bayesian estimator that
considers the problem of unknown initial conditions. In the second extension, we allow
for cross-sectional dependence by including common factors. We propose the Mean
Cluster estimator using the time-demeaned variables to estimate this model.

1. INTRODUCTION

Heterogeneous linear dynamic panel data models with short time dimension (T) suffer
from two well-known problems: the incidental parameter bias (Nickell (1981)) and the
unknown initial conditions dependency (Hsiao (2020), Wooldridge (2005b)).
The first-difference GMM estimator (Arellano and Bond (1991)) is inconsistent when

the persistence parameter is heterogeneous across individuals, t. The reason is that ig-
noring the individual heterogeneity in the persistence parameter is equivalent to model
misspecification. If we assume that the individual persistence parameter is random, we
end up with an endogeneity issue without available instrumental variables. In a hetero-
geneous dynamic panel data model with a long time dimension, one can use the Mean
Grop estimator. But when the time dimension is as short as 3, the Mean Group esti-
mator is unfeasible because the risk of the individual least squares estimator is of order
K/T , with K representing the total number of covariates. Another limitation of the mean
group estimation is that the small number of time observations prevents including a big
number of covariates.
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While the identification and estimation of dynamic linear panel data models with un-
observed multiplicative individual heterogeneity and time dimension as short as 3 seems
hopeless, one can still find a workaround for the problem if individuals present simi-
lar behavior within known clusters. A known clustering structure is possible in sampling
frameworks where the population is clearly clustered. For instance, one could think about
households within counties, employees within firms, firms within industries, etc.
This motivates the proposal of an alternative estimation methodology for dynamic lin-

ear heterogeneous panel data models that exploits the clustering structure in the data.
For this purpose, we assume that the persistence coefficient and the additive individual
heterogeneity are homogeneous within cluster, and that the multiplicative individual un-
observed heterogeneity is partitioned into two components, multiplicative individual het-
erogeneity correlated with the regressors that is pooled within clusters and multiplicative
individual heterogeneity that is uncorrelated with the regressors within clusters. Under
these key assumptions, it is possible to obtain consistent estimates and overcome the
incidental parameter bias as well as the initial conditions problem.
The heterogeneity is modeled with a mixed coefficient structure composed of fixed

cluster-specific effects and random cluster-individual-time-specific effects. Therefore, the
model considered in this paper presents additive and multiplicative cluster fixed effects
instead of individual-specific fixed effects.
The key assumption of a mixed coefficient structure is related, but not equal, to the

assumption presented by Krishnakumar et al. (2017) for a static three-level linear panel
data model. The latter assumption states that the coefficient vector is equal to the sum
of a mean coefficient vector plus fixed specific effects and random specific effects. In con-
trast, the former assumption states that the coefficient vector equals the sum of varying
coefficients at cluster level plus cluster-individual-time random components. In addition,
the assumption of a mixed coefficient structure is related to the assumption described
by Hsiao (2014) for two-level panel data that states that coefficients are composed of a
systematic component driven by observed regressors and a random component.
The advantage of including cluster fixed effects instead of individual fixed effects is that

the number of clusters specific fixed effects is lower. The dimensionality reduction of the
fixed effects allows consistent estimation because the problem of incidental parameter bias
disappears when the number of individuals in the cluster ng grows. Another advantage
is that the initial condition dependency is controlled. In contrast, a disadvantage of
including cluster fixed effects instead of individual effects is that the model is misspecified
if individuals do not pool within clusters. We address this problem by extending the
model and allowing additive cluster-individual fixed effects. Another problem surges if
the assumed clustering structure is not correct.
More specifically, we investigate the identification and estimation of dynamic heteroge-

neous linear models for clustered panel data that is unbalanced due to randomly missing
data and with short time dimension. For this purpose, we use a three-dimensional panel
data framework and consider the following baseline model for individual i belonging to
cluster g:

ygit = ρgygit−1 + x′gitβgit + α1,g + εgit, t = 1, 2, ..., Tig . (1.1)

Index i refers to individual i belonging to cluster g, index t refers to the time observation
t of individual i belonging to cluster g. 1 The number of observed groups in the panel

1We could have used the alternative notation ig that represents individual i belonging to cluster g and
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is equal to m, the number of individuals per group equals to Ng, and the number of
observations per individual i in group g is equal to Tig . Each group g has a total number
of observations equal to ng =

∑
ig
Tig .

The parameters of interest of model 1.1 are the cluster specific persistence parameter ρg
and the cluster specific mean coefficients (βg = E[βgit|Fg] with Fg representing cluster
g sub-sigma-field), as well as their overall averages.
Additionally, we allow for residual random multiplicative cluster-individual-time spe-

cific heterogeneity in the coefficient vector that aims to capture possible random devia-
tions of individuals from their cluster.
To estimate the baseline model 1.1, we propose two Mean Cluster (MC) estimators and

the cluster-specific estimators. The Mean Cluster estimators are the mean of the FGLS or
OLS parameter estimations of each cluster g. In order to make GLS feasible, we propose a
ridge estimation of the variance-covariance components along with a modification suitable
for a big sample size. These estimators are consistent: i) under stratified sampling when
the number of clusters is fixed, the proportion of observed clusters is equal to 1 and the
number of individuals per cluster grows to infinity or ii) under cluster sampling when
the square root of the number of clusters grows at a slower rate than the growth rate of
the number individuals per cluster.
The main advantages of the Mean Cluster estimators are: i) the estimation of dy-

namic heterogeneous panel data models with only three-time observations is possible,
ii) the cluster-specific persistence parameters are identified, iii) the number of covariates
included in the model is not restricted by the size of the time dimension, and iv) the
computational burden is lower since one partitions the data in clusters. The latter hap-
pens because the estimation technique performs a first step local optimization and global
optimization when averaging in the second step. The main disadvantages of the Mean
Cluster FGLS or OLS estimators are i) not robust to violation of cluster assumption, and
ii) inconsistent when the proportion of observed clusters is lower than 1 under stratified
sampling.
In order to test the assumption of clustered individual heterogeneity, we propose two

specification tests that are extensions of the Hausman test (Hausman and Taylor, 1981).
First, testing the null hypothesis of cluster additive and multiplicative heterogeneity ver-
sus cluster-individual additive and multiplicative heterogeneity is not feasible when the
time dimension is as short as 3. But, testing the null hypothesis of complete homogeneity
versus cluster additive and multiplicative heterogeneity is possible. In this case, we pro-
pose to compare the Mean Cluster estimator with the simple Pooled OLS estimator. In
addition, testing the null hypothesis of cluster additive and multiplicative effects versus
cluster-individual additive heterogeneity and cluster multiplicative heterogeneity is also
viable. In this case, we propose to compare the Mean Cluster estimator against the Mean
Cluster first-difference GMM estimator or the Mean Cluster estimator using a Mundlak
approach. The study of the statistical properties of these tests is left for further research.
It is clear that the failure of the assumption of clustered heterogeneity causes incon-

sistency of the estimators. As a possible solution, we extend the baseline model 1.1 to
allow for the presence of cluster-individual specific additive effects. In this setting, we are
back to the problems of incidental parameters and initial conditions dependency. In order
to deal with the incidental parameters, we use the Mundlack approach and we propose

tig for time observation t of individual i belonging to group g as explained in Section 2. But we use three
indexes to simplify the notation.
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a Bayesian hierarchical estimator with a prior for the initial conditions. The Bayesian
estimator requires the correct specification of the prior of the initial conditions. Thus,
the assumption of initial conditions generated from the stationary distribution is critical
for consistency of the proposed Bayesian estimator. While we present an alternative prior
allowing for initial conditions that are not generated from the stationary distribution, it
is not straightforward to decide which is the correct assumption for the initial conditions.
As an alternative, we use the Chamberlain or the Mundlak approach conditioning on the
initial values (Wooldridge (2005b)) and we propose to estimate the the cluster-specific
parameters using a factor analytical method following Bai (2013). Another issue is the
potential cross-sectional dependence within clusters. In order to deal with this prob-
lem, we extend the baseline model 1.1 to a setting that includes common factors and
we propose Mean Cluster estimation using the time-demeaned variables (Sarafidis and
Robertson (2009)).
The literature for dynamic heterogeneous linear panel data models focuses on two-

level panel data models or models that ignore clustering. Pesaran et al. (1999) proposes
a Mean Group estimator that averages the OLS estimators for each individual in the
panel. This estimator is consistent when the time dimension grows to infinity and needs
debiasing when the time dimension is short. Hsiao et al. (1998) presents a hierarchical
Bayes estimator for small panels that assumes that the initial conditions are fixed. The
literature for clustering in panel data concentrates on panels with a long-time dimension.
Bester and Hansen (2016) propose a grouped estimator for fixed effects non-linear models
based on observable characteristics. Bonhomme and Manresa (2015) propose a grouped
fixed effects estimator that converges to a pseudo true value that it is not necessarily
equal to the true value when the time dimension is as short as 3 (Sarafidis and Wansbeek
(2021)).
This paper contributes to the literature in five ways: i) it introduces an assumption of

a mixed coefficient structure for three-level panel data that states that the coefficients
are composed of fixed coefficients varying at the cluster level and cluster-individual spe-
cific random effects and that is appropriate for a setting under stratified sampling 2,
ii) it proposes a Mean Cluster estimator, iii) it provides the conditions for consistency
and asymptotic normality of the Mean Cluster estimators under stratified and cluster
sampling, iv) it provides an estimation method for the variance-covariance of the model
by extending the methodology presented by Krishnakumar et al. (2017) to a dynamic
setting, v) it proposes a hierarchical Bayesian estimator that takes into account the ini-
tial conditions, vi) it shows that the first-difference GMM estimator is inconsistent in
the presence of cluster heterogeneity in the persistence parameter. In addition, the paper
presents a discussion about violations of the assumed variance-covariance matrix of the
model, it proposes to condition on the initial values to relax the assumption that the
initial conditions are generated from the stationary distribution (Wooldridge (2005b),
Hsiao et al. (2002)), it proposes specification tests, it shows that when the time dimen-
sion is long the Mean Group estimator is equivalent to the Mean Cluster estimator under
stratified sampling, and it discusses a setting with long time dimension.
The rest of the paper is organized as follows: Section 2 explains the structure of the

2This assumption is not equal to the one proposed by Hsiao et al. (1989). The authors proposed mixed
fixed and random coefficients, which means that some regressors present fixed coefficients and other
random coefficients. In contrast, I assume that the coefficients of the regressors are the sum of cluster
fixed specific effects and random effects.
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data, Section 3 presents the model with its assumptions and its relationship with two-
level panel data, Section 5 states the identification strategy of the parameters of interest,
Section 4 presents the estimation strategy, Section 6 exposes the statistical properties
of the methods proposed, Section 7 discusses consequences of misspecification of the
variance-covariance matrix of the disturbance term of the model, 8 compares the Mean
Cluster estimator with other available estimators, Section 9 presents the necessary as-
sumptions for a setting under cluster sampling, Section 10 explains possible limitations
of model 1.1, Section 11 presents specification tests, Section 12 relaxes the assumption of
additive cluster effects to cluster-individual additive specific effects and presents Bayes
estimation and estimation conditioning on the initial values, Section 13 presents an ex-
tension of the model with cross sectional dependence, Section 14 discusses the behavior
of the Mean Cluster estimator in a setting with long time dimension, Section 15 explains
the challenges of unknown clustering when the time dimension is as short as 3, Section 17
describes the Monte Carlo experiments and the results, Section 18 gives the conclusions.
Notation: || · ||2 is the Euclidean norm. || · ||F is the Frobenius norm. Scalar random

variables are collected in column vectors; for instance ygit can be collected in the vector
y ∈ RM (y = [y111 ... ymNmTim

]′). Matrices are denoted by uppercase letters; for
instance the matrix X ∈ Rn×K that collects the transpose of the column vector xgit ∈
RK×1 containing K regressors corresponding to individual i belonging to cluster g at
period t. IA represents the identity matrix with dimension A × A where A is a positive
integer. 0 represents a vector of zeros with dimensions K × 1.

2. DATA STRUCTURE

The data {yit, xit}Ni=1 is obtained from stratified sampling, and it can be partitioned in m

nonoverlapping subsets {yigt, xigt}
Ng

ig=1. The population is stratified in m nonoverlapping
independent known clusters, this means that the number of observed clusters m is equal
to the total number of clusters in the population. In contrast, under cluster sampling
the number of observed clusters m is not equal to the total number of clusters in the
population. Individuals are independent within cluster (this is relaxed in Section 13).
For each cluster g, Ng individuals are sampled over Tig periods. The total number of
individuals across clusters is N =

∑m
g Ng. The total number of observations per cluster

g is ng =
∑

ig
Tig . The total number of observations in the data set is n =

∑m
g ng. This

data can be seen as an unbalanced three-level panel.

We define the following subscripts:

• g denotes each group and takes values g ∈ {1, 2, ...,m}.
• ig denotes individual ig in group g and takes values ig ∈ {1, 2, ..., Ng}.
• tig denotes time observation t of individual ig in group g and takes values tig ∈

{1, 2, ..., Tig}.

Remark 2.1. For simplicity, we use i and t equivalently to ig and tig . This does not
mean that we assume that individual i is not subordinated to g.

3. THE MODEL

We consider the autoregressive distributed lag ARDL(1,0) heterogeneous panel data
model for a random draw i from the population of cluster g:
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ygit = α1,g + ρgygit−1 + x′gitβgit + εgit, t = 1, ..., Tig , (3.2)

with:

βgit = βg + λgit. (3.3)

where ygit is the observed outcome variable with support Y ⊆ R, ygit−1 is the first lag
of the outcome variable, and xgit is a K × 1 vector of observed explanatory variables for
individual i in cluster g for period t with support X ⊆ RK (variables with finite support
are also allowed), εgit is an unobserved idiosyncratic cluster-individual error term in
period t.
The unobserved parameters of interest are the cluster-specific parameter (ρg) and the

cluster-specific slope coefficients (βg). The model also includes cluster additive specific
fixed effects (α1,g) as well as multiplicative cluster-individual-time specific effects (λgit).
Since individuals belong to an overall population that is partitioned in known clusters,
there is also interest in the overall averages of the parameters E[ρg], E[βg].

3

The total number of time observations per individual Tig is small and considered fixed
in the asymptotic analysis. The number of individuals per cluster is Ng and the total
number of individuals in the panel N are growing to infinity. The number of clusters
is fixed under stratified sampling. This setting can be evaluated using an asymptotic
sequence framework where we allow Ng to grow and the time dimension Tig is fixed
(Moon et al., 2018).
As mentioned before, it is well known that the growth of the individual dimension

produces an incidental parameter bias when there is individual-specific heterogeneity
and the time dimension is short. A standard approach to avoid this incidental parameter
problem is to assume random coefficients for each individual i in the sample or allow
for additive individual fixed effects. In this paper, we handle this problem by imposing
clustered heterogeneity and using a novel mixed structure in the slope coefficients.
More specifically, we assume that ρg is fixed and the slope coefficient vector presents

a mixed structure (βgit = βg + λgit) composed of a cluster-specific fixed component
(βg) and a random cluster-individual-time specific effect λgit. In addition, we assume a
full variance-covariance matrix for the random cluster-individual-time specific effect that
captures the covariance between marginal effects of the included regressors in the model.
This coefficient structure allows for possible clustered endogenous heterogeneity while
admitting random deviations of individual time-specific marginal effects from their cluster
mean. For instance, one could think that common cultural unobserved characteristics
drive the heterogeneous habit formation of individuals in a certain cluster while possible
deviations are random and noncorrelated to “taste-shifters”. 4

The mixed coefficient structure can have three possible interpretations: i) the data is
sampled from a density function with heterogeneous parameters, ii) the correlation of
the regressors with unobserved multiplicative individual heterogeneity is equal within
cluster, or iii) the regressors are freely correlated to multiplicative cluster unobserved
heterogeneity while preserving noncorrelation with multiplicative cluster-individual-time
specific unobserved heterogeneity (See Section 9). An example of the second interpreta-
tion is that innate ability and the marginal return to education of individuals are equally
correlated to education within a city if we believe that individuals with higher ability do

3They can be seen as average partial effects as explained by Wooldridge (2005a).
4Dynan (2000) calls “taste-shifter” to preference related variables.
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not only self-select into education levels but also into the city where they will have the
highest return to their education.
Model 3.2 is relevant for different empirical applications because it permits accounting

for correlated cluster heterogeneity as well as individual and time heterogeneity. For in-
stance, one could be interested in studying dynamic heterogeneous demand equations, the
heterogeneity of habit formation, income persistence, dynamic heterogeneous treatment
effects, and others.
In the following lines, we present the assumptions of the model in more detail.

Assumption 3.1. Cluster membership is known and fixed over time.

The researcher knows the clusters based on observed characteristics. For instance, clus-
tering can be done by counties, sub-regions, economic activity categories at a detailed
level, among others. The membership of individual i into cluster g is denoted by the

indicator variable s
(g)
i ∈ {0, 1} that takes value 1 if the individual belongs to cluster g

and 0 otherwise. Thus, each individual has m indicator variables. It is crucial to notice
that cluster belonging does not vary with time.

The sum of s
(g)
i for all individuals in the panel gives the number of individuals in the

cluster g (
∑N

i s
(g)
i = Ng).

Assumption 3.2. Number of individuals within cluster is growing.

N → ∞ ⇒ Ng → ∞, ∀g ∈ {1, 2, ...,m}.

The number of individuals within cluster grows to infinity when the number of individuals
in the panel grows to infinity. This could happen for households within sub-region or
enterprises in an economic sector.

Assumption 3.3. Non vanishing clusters.

lim
N→∞

Ng

N
→ πg, ∀g ∈ {1, 2, ...,m},

πg ∈ (0, 1).

The proportion of cluster population to the overall population converges to a fixed num-
ber greater than 0 but less than 1 as the number of individuals within cluster and the
total number of individuals in the panel grows to infinity. This assumption implies that
the number of clusters is fixed.
It is possible to assume that the number of clusters grows. In this case, this assumption
is replaced by vanishing clusters and it is necessary to add a restriction to its growth
rate by assuming that it grows at a slower rate than the squared number of individuals

in the cluster such that

√
m(ng)

ng
→ 0 as ng → ∞ (See Section 9). This means that the

number of clusters is an increasing monotonic function of the total number of observations
within cluster, and its square root is o(ng). An example of this setting could be the
Public Use Microdata Areas (PUMA) of the USA. Each PUMA has at least 100,000
individuals per unit, and the number of PUMAs is large. In this case, we can assume
that cluster-specific effects are random, either correlated or not to the regressors, and the
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estimation methodology given in Section 4 is still consistent for both cluster and mean
coefficients. Nevertheless, the asymptotic framework differs from the one presented in
Section 6 and it is provided in Section 9. If one desires to relax completely the requirement
of growing individuals per cluster and still obtain unbiased estimators per cluster, one
needs a debiased cluster estimator.

Assumption 3.4. The proportion of observed clusters (q) concerning to the total number
of clusters in the population is equal to 1.

This assumption is in line with stratified sampling. If the proportion of observed clusters
(m) with respect to the total number of clusters in the population is lower than 1 and
the number of clusters in the population is small, the sample is not representative of the
underlying population. As a result, the Mean Cluster estimator is unfeasible as there is
insufficient information. If the proportion of observed clusters (m) with respect to the
total number of clusters in the population is lower than 1 and the number of clusters
in the population is large, we are in a setting where not all clusters in the population
are sampled and correspond to a cluster sampling setting. In Section 9, we present the
assumptions compatible with cluster sampling. An example of data obtained by means
of cluster sampling is the one used by Andrabi et al. (2011).

Assumption 3.5. Fixed cluster additive specific effects α1,g.

Assumption 3.6. Fixed cluster specific persistence parameter.

ρg ∈ (−1, 1).

Assumption 3.7. Mixed cluster-individual-time specific coefficients.

βgit = βg + λgit,

E[λgitλ
′
g′i′t′ |xgi1, xgi2, ..., xgiT ] =

{
∆λg

if g = g′, i = i′andt = t′,

0 otherwise,
.

The unobserved coefficient vector is composed of a fixed cluster coefficient vector (βg),
and a heteroskedastic random component (λgit) conditional on covariates that captures
the multiplicative heterogeneity over time for each individual of cluster g.

Assumption 3.8. The random cluster-individual-time effects have zero mean conditional
on the covariates.

E[λgit|xgi1, xgi2, ..., xgiT , ygit−1] = 0.

This implies that E[βgit|xgi1, xgi2, ..., xgiT , ygit−1] = βg. As a consequence of this as-
sumption and Assumption 3.5, E[λgit] = 0.

Assumption 3.9. Strict exogeneity of the covariates with the disturbance term.
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E[εgit|xgi1, xgi2, ..., xgiT , ygit−1] = 0.

This assumption is in line with Hsiao et al. (1998) and it rules out possible feedback of ygit
with future values of the covariates. It implies the model presents dynamic completeness
without conditioning on cluster effects because cluster-specific effects are considered fixed
parameters. It is also possible to assume that the cluster effects are random and correlated
with the regressors. With correlated cluster effects, the strict exogeneity of the covariates
must be conditional on the cluster-specific effects. The orthogonality conditions presented
in section 5 hold under strict exogeneity of the covariates conditional on the cluster-
specific effects (See Section 9). As a consequence of this assumption and Assumption 3.5,
E[λgit] = 0.

Remark 3.1. According to Wooldridge (2010), strict exogeneity rules out possible feed-
back of the past values of the dependent variable to the covariates. Allowing for this
feedback requires relaxing this assumption to sequential exogeneity. The assumption of
sequential exogeneity is weaker than strict exogeneity since it allows for feedback from
ygit to xgit+1, ..., xgiT . For instance, consumption in period t can have an effect on taste
shifters in periods after t. In order to allow for this possible feedback, it is necessary to
modify the first stage of the estimation method proposed in section 4 by replacing OLS
or GLS with GMM using instrumental variables.

Assumption 3.10. The error term εgit is homoskedastic, and uncorrelated within each
cluster g but heteroskedastic across clusters conditional on regressors .

E[ε2git|xgi1, xgi2, ..., xgiT ] = σ2
εg <∞.

E[εgit, εg′i′t′ |xgi1, xgi2, ..., xgiT ] = 0, if g ̸= g′, i ̸= i′, t ̸= t′.

Assumption 3.11. ygit are generated from the stationary distribution of the process with
initialization values ygi,−hig

sampled hig number of periods before the data collection in
period 0.

The initial conditions are given by:

ygi0 = ρ
hig
g ygi,−hig

+ α1,g
1− ρ

hig
g

1− ρg
+

hgi∑
l=0

ρlgx
′
gi−lβgi−l +

hig∑
l=0

ρlgεgi−l. (3.4)

with hig unrestricted. It is possible to set hig free because the initial conditions (ygi0) de-
pendence is controlled under the assumption of fixed cluster additive effects (Assumption
3.5).
Assumption 3.11 is not necessary in the presence of fixed cluster-additive effects (Assump-
tion 3.5). The reason is that the dependence of the initial conditions ygi0 is controlled
because the cluster-additive effects are assumed to be fixed. As a result, the Mean Cluster
estimator (Section 4) is consistent without Assumption 3.11 if the Assumption 3.5 holds.
In contrast, Assumption 3.11 is essential if there are cluster-individual additive effects
instead of cluster additive effects. The reason is that, under Assumptions 3.11 and 3.12,
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the initial conditions can be projected into all past, present and future values of the
regressors. This means that it is possible to estimate the model either using a Bayesian
approach or conditioning on the initial value ygi0 (Hsiao et al. (2002)).
In addition, if the model presents cluster-individual additive fixed effects instead of

cluster additive effects and hig is small, the individual initialization values ygi,−hig
are

essential because there exist initial conditions (ygi0) dependence. In that case, there is a
need to add an assumption to avoid the incidental parameter problem: E[ygi,−hig

] = bg.
On the other hand, having hig → ∞ means that the effect of the initialization value dies
(Similar to Hsiao et al. (2002)).
Assumption 3.11 can be relaxed in the presence of cluster-individual additive effects. In
this case, the Bayesian estimator requires a prior for the initial conditions not gener-
ated from the stationary distribution. A simpler solution is to condition on the initial
conditions as suggested by Wooldridge (2005b).

Assumption 3.12. xgit are generated from:

xgit = µg + ρxxgit−l + ωgit, |ρx| < 1.

xgit are stationary with ωgit i.i.d with variance σ2
ω. This assumption is similar but not

equal to the one presented by Hsiao et al. (2002). Assumption 3.12 in combination with
Assumption 3.6 states that the dependent variable and the regressors are both integrated
of order 0.
It is possible to relax Assumption 3.12 and allow for the presence of cluster-specific trends
as follows:

xgit = µg + bgt+ ρxxgit−l + ωgit, |ρx| < 1.

The Mean Cluster estimator presented in section 4 is consistent with trend stationary
regressors if we include a deterministic trend in model 3.2. Otherwise, it is consistent only
if the data-generating process started a short time ago (small hig ). An example could
be the wage of young individuals, which means one could include age or experience as
regressors in the model.
When the model presents cluster additive specific effects, relaxing Assumption 3.12 causes
a non-stationary dependent variable. The cluster-specific estimators remain consistent if
the regressors and the dependent variable are co-integrated per cluster. In addition, the
inclusion of the lag of the dependent variable in the right-hand side of the equation
may produce a stationary error term (Hamilton (1994)). As a result, the Mean Cluster
estimator may remain consistent and asymptotically normal but this is left for further
research. If the regressors and the dependent variable are not co-integrated per cluster,
it is not clear if the pooled cluster OLS estimator is consistent even if Phillips and
Moon (1999) show that pooled OLS is a consistent estimator of the long-run average
regression coefficient if the regressors are non-stationary and there is no co-integration.
The reason is that they considered a model that does not present an intercept and the
lag of the dependent variable. In order to test for co-integration, one needs to extend
the test proposed by Im et al. (2003) to allow for cluster-specific parameters instead of
individual-specific parameters. Concluding that there is co-integration would entail that
ugit = x′gitλgit + εgit is stationary, implying that λgit could be considered as a random
co-integrating vector. A study of a co-integration test and the properties of the Mean-
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Cluster estimator when there is no co-integration is outside the scope of this paper, and
both issues are left for further research.
When the model presents cluster-individual specific effects instead of cluster-specific ef-
fects, the assumption of stationary regressors is important. The reason is that the presence
of cluster-individual specific effects causes the problem of initial conditions dependency.
This problem can be solved by projecting the initial conditions on the past, the present,
and the future values of the regressors. Moreover, the projection of the initial condi-
tions on the regressors is only possible if the regressors are stationary (Hsiao (2020)).
Thus, non-stationary regressors cause the failure of the Bayes estimator proposed in sec-
tion 12.1. The reason is that it is not possible to project the initial conditions on the
cluster-individual mean of the regressors Hsiao (2020). A solution is conditioning on the
initial conditions as proposed by Wooldridge (2005b) because this does not require As-
sumption 3.12. In this case, the Mean Cluster estimator is consistent in the presence of
non-stationary regressors with or without co-integration (Phillips and Moon (1999)). Al-
ternatively, one can include non-stationary regressors in the model after first differencing
them.
Another issue is binary regressors. Under Assumption 3.12, binary regressors are modeled
with a linear probability model. In this case, a more suitable assumption could be a
dynamic latent model. Another option could be a Markov chain assumption. This is left
for further research.

3.1. Relationship between the baseline model and two-level panel data

Model 3.2 is related to a heterogeneous dynamic model for two-dimensional panel data
under special conditions. To see this clearer, let us consider the following model:

yit = αi + ρiyit−1 + x′itβit + εit, i = 1, 2, ..., N, t = 1, 2, ..., Ti. (3.5)

If the following assumptions hold, we can rewrite the two-level dynamic panel data
model 3.5 as the three-level panel data model 3.2.

Assumption 3.13. The individual additive unobserved effect is homogeneous within clus-
ter

αi = αg ∀i ∈ g.

Under this assumption, the correlation of the additive unobserved individual heterogene-
ity with the regressors is equal within clusters. For instance, the innate ability of workers
is equal within city. This is feasible if workers self-select into a city based on their ability.

Assumption 3.14. The individual persistence parameter is homogeneous within cluster

ρi = ρg ∀i ∈ g.

This means that the persistence of the dynamic process is equal within clusters. An ex-
ample of homogeneous persistence is equal consumption persistence within village. The
homogeneity of consumption persistence within village could happen if village character-
istics drive consumption habits.



12 M. Avila Márquez

Assumption 3.15. The slope coefficients are conditional mean dependent on cluster be-
longing

E[βit|s(g)i , xi1, xi2, ..., xiT ] = βg.

This assumption is equivalent to assumption 3.7.
The use of three-level or multi-dimensional panel data models surged due to the in-

creasing availability of big data (Matyas (2017), Sarafidis and Wansbeek (2021)). The
reason is that it allows to 1) control for unobserved heterogeneity that is not only indi-
vidual and/or time specific (Sarafidis and Wansbeek (2021)), 2) accommodate belonging
of each individual in clusters or groups (Sarafidis and Wansbeek (2021)), 3) deal with
incidental parameter bias, 4) develop appropriate inference that considers the sampling
uncertainty.
In this particular setting, three-level panel data allows the use of a mixed-coefficient

structure with random coefficients within clusters and fixed coefficients across clusters,
and the use of cluster additive specific effects instead of cluster-individual specific effects.
Thus, we avoid the problem of incidental parameter bias. In addition, the available data
{yit}Ni=1 can be partitioned into non-overlapping sub-samples reflecting the sampling de-
sign. Consequently, using three-level panel data permits to make explicit assumptions
about cluster belonging, the stability of cluster belonging, and the relationship between
clusters. Furthermore, we provide appropriate inference for two different sampling frame-
works.

4. ESTIMATION

If we re-write model 1.1 using backward substitution, we obtain the following expression
of the dependent regressor:

ygit = ρtgygi0 +

t∑
l=0

ρlg(α1,g + x′git−l(βg + λgit−l)) +

t∑
l=0

(ρlg)εgit−l. (4.6)

Using this result, the first lag of the dependent variable can be rewritten as:

ygit−1 = ρt−1
g ygi0 +

t−1∑
l=0

ρlg(α1,g + x′git−1−l(βg + λgit−1−l)) +

t−1∑
l=0

(ρlg)εgit−1−l. (4.7)

It is easy to see from (4.7) that first-difference GMM estimation (Arellano and Bond
(1991)) ignoring the clustering structure of the data leads to inconsistent estimates of
the mean parameters. This is caused by the presence of the first lag and the cluster-
specific effects in the right-hand side of the model causing endogeneity. Moreover, it is
not possible to find an instrument that is uncorrelated with the composite error term
and correlated with the regressors. 5

Similarly, one could argue that the researcher could perform Mean Group estimation

5Ignoring cluster effects is equivalent to performing first-difference GMM estimation on the model:
∆yit = ρ∆yit−1+∆x′

itβ+∆uit with: ∆uit = ∆yit−1α2,g+∆x′
itα3,g+∆x′

itλgit+∆εit, α2,g = ρg−E[ρg ]
and α3,g = βg − E[βg ]. Thus, we would not have available instruments. Another possibility could be
first-difference GMM estimation on the model in first differences using multiplicative cluster dummies
when T > 2. But one could run into the problem of weak instrumental variables (Bun and Windmeijer,
2010).
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per individual within cluster. Mean Group estimation could be used to estimate cluster-
specific parameters only if the time dimension is bigger than the number of covariates and
growing to infinity or using small sample debiasing techniques (Available only if T > 3).
Thus, when the time dimension is fixed and the number of individuals per cluster is big
it would be beneficial to use another estimation strategy.
In order to fill this gap, we propose a methodology that allows for the estimation of

the mean cluster and the cluster-specific coefficients using a two-stage procedure. This
estimation technique is an extension of the Mean-Group Estimator presented by Pesaran
and Smith (1995). The two-stage procedure is the following:

First stage: In the first stage, one estimates the cluster-specific coefficients by ex-
ploiting the population moment condition for individual i within group g:

E[ugitzgit] = 0, t = 1, 2, ..., Tig . (4.8)

Moreover, the sample moment conditions per cluster g are given by:

1

Ng
u′gZg = 0, g = 1, 2, ...,m. (4.9)

It is easy to see that using the sample moment conditions 4.9 as estimating equations
leads to a simple ordinary least squares estimator:

θ̂g,OLS = (Z ′
gZg)

−1(Z ′
gyg).

This estimator is not the most efficient since the model presents a non-i.i.d composite
error term ugit. A straightforward solution is to set a GLS estimator:

θ̂g,GLS = (Z ′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g yg),

where Ωg = E[ugu
′
g] = diag(Xg)(INgT ⊗∆λg )diag(Xg) + σ2

εgINg if Tg = T . If Tg ̸= T ,
one just needs to set up the adequate design matrix to allow unbalancedness in the time
dimension.
Since Ωg is unknown, we propose an estimation procedure for Ωg in Subsection 4.1.
The assumptions of unobserved additive and multiplicative cluster fixed effects allow

us to estimate the specific parameters by pooling observations within each cluster (As-
sumptions 3.5, 3.6, 3.7). Additionally, OLS or FGLS estimation is consistent under the
assumptions presented in Section 3 because the model is dynamic complete conditional
on cluster-specific effects. But the FGLS estimator is non-robust to violations of the as-
sumptions 3.7 and 3.10 because the variance-covariance matrix is not diagonal if λgit and
ϵgit are heteroskedastic, serially correlated and/or present cross-sectional correlation. In
this case, it is better to use the OLS estimator with a fully robust variance estimator as
explained in Section 7.
In the case of endogenous regressors, replacing the OLS or FGLS first-stage estimation

with GMM estimation using instrumental variables is possible. In this case, identification
is done using the population moment conditions E[ugitpgit] = 0 with pgit a vector of
appropriate instruments. Moreover, for identification it is also necessary to assume that
the number of instrumental variables is equal or larger than the endogenous regressors.
Second stage: the estimator of E[θg] is equal to the weighted average of the cluster

estimated parameters. This is called the Mean Cluster estimator, and it is given by:
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ˆ̄θMC =

m∑
g

π̂g θ̂g,

where π̂g is an appropriate estimator of the importance of the cluster in the population,
ˆ̄θMC = [ˆ̄ρ ˆ̄α1,g

ˆ̄β]′, θ̂g = [ρ̂g α̂1,g β̂g]
′.

Under stratified sampling, we propose a weighted average of the cluster-specific coeffi-
cients where the weights represent the importance of each cluster in the population.
The difference between the Mean Cluster (MC) estimators and the Mean Group (MG)

estimator proposed by Pesaran and Smith (1995) is that the MG is obtained by averaging
the estimators for each individual in the panel. In contrast, the MC averages cluster
pooled estimators.
The Mean Cluster estimator is also consistent under cluster sampling. Under cluster

sampling, the proportion of observed clusters with respect to the total number of clusters
in the population is lower than 1. Because the observed clusters are sampled with equal
probability, we assign an equal weight ( 1

m ) to all observed clusters. The assumptions for
this setting are presented in Section 9 as well as the derivation of the statistical properties
of the Mean Cluster estimator.

4.1. Variance-Covariance Estimation

In order to make GLS feasible, we propose a ridge regression estimation method of the
variance-covariance components of △λg and σ2

εg .
First, we derive the linear decomposition of the variance-covariance matrix for each clus-
ter:

Ωg =

K∑
k=1

K∑
k′=1

σλg,kk′Hg,kk′,λg + σ2
ϵgIng . (4.10)

with the design matrices equal to:

Hg,kk′,λg
= X̃g,kX̃

′
g,k′ ,

where X̃g,k = diag(xgit,k).
Now, we obtain a first stage estimator of the residuals for each cluster using OLS esti-
mation rgOLS

= (Ing
− Zg(Z

′
gZg)

−1Z ′
g)yg = Mgwg where Zg ∈ Rng×(K+1) is the matrix

stacking up all the observations for zgit = [ygit−1 1 x′git]
′. Then, it follows that:

E[rgOLS
r′gOLS

|Xg] =MgΩgMg. (4.11)

Replacing expression (4.10) into equation (12.58) and applying the vec operator, we
obtain:

vec(E[rgOLS
r′gOLS

|Xg]) =

K∑
k=1

K∑
k′=1

σλg,kk′vec(MgHg,kk′,λgMg) + σ2
ϵgvec(Mg). (4.12)

Now, we can rewrite the previous expression in matrix form:

vec(E[rgOLS
r′gOLS

|Xg]) = Bλg
vec(△λg

) + σ2
ϵgvec(Mg). (4.13)

In order to avoid double estimation of the covariances in the variance-covariance matrix,
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we use the identity vec(A) = Dvech(A) where A is a square symmetric matrix and we
re-express the previous equation as:

vec(E[rgOLS
r′gOLS

|Xg]) = Bλg
Dvech(△λg

) + σ2
ϵgvec(Mg). (4.14)

The expectation of the outer product of the residuals is replaced by the point estimator
of the OLS residuals for each cluster and we add the error νg that captures the sampling
error.

vec(rgOLS
r′gOLS

) = Bλg
Dvech(△λg

) + σ2
ϵgvec(Mg) + νg. (4.15)

Finally, notice that 12.62 is a simple linear model that can be rewritten as:

Rg = Cgηg + νg,

where:

Rg = vec(rgOLS
r′gOLS

),

Cg = [ Bλg
D vec(Mg)],

Bλg
= [vec(MgHg,11,λg

Mg) vec(MgHg,12,λg
Mg) ... vec(MgHg,KK,λg

Mg)],

ηg = [vech(△λg
)′ σ2

ϵg ]
′.

Now, the estimators of the elements of variance-covariance are obtained by minimizing
the following penalized loss function:

L(ηg) = (Rg − Cgηg)
′(Rg − Cgηg) + τ ∥ ηg ∥22,

where τ is the penalisation parameter.
Notice, that for identification of ηg we implicitly assume:

Assumption 4.1. E[νgCg] = 0.

Assumption 4.1 states that the error term νg is orthogonal to the covariates included
in Cg.
The penalization term using the l2-norm allows us to tackle the problem of high multi-
collinearity in the matrix C ′

gCg. We follow Hoerl et al. (1975), Cule and De Iorio (2012)
by estimating τ from the data as follows:

τ̂ ≥ σ̂2

β̂′
OLS β̂OLS

,

σ̂2 =
(y −Xβ̂OLS)

′(y −Xβ̂OLS)

NT −K − 1

Following Hoerl and Kennard (1970), we can prove that the MSE of β̂FGLS is mono-
tonically decreasing on τ . Thus, we can choose a τ > 0 that minimizes MSE. The choice τ̂
is heuristic, and we acknowledge that it might be possible to derive an optimal estimator
of τ (this is left for further research).
C. Large and Huge Sample Size

When the sample size is big, there are problems due to memory requirements for storing
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vectorized matrices. In order to tackle this issue and reduce the computing requirements
by half, we modify the method proposed above using the vech operator instead of the vec
operator. It is possible to do this replacement since we are dealing with square symmetric
matrices.

Rg = vech(rgr
′
g),

Cg = [Bλ,g vech(Mg)],

Bλg = [vech(MgHg,11,λgMg) vech(MgHg,12,λgMg) ... vech(MgHg,KK,λgMg)].

This modification improves the computational performance but has limitations. For
big samples, one needs computational algebra methods for matrix inversion and multi-
plication.

5. IDENTIFICATION

For identification, we can rewrite the model 3.2 as:

ygit = ρgygit−1 + α1,g + x′gitβg + ugit = z′gitθg + ugit, (5.16)

where: zgit = [ygit−1 1 x′git]
′, θg = [ρg α1,g β′

g]
′, and ugit = x′gitλgit + εgit is a

composite error term.
Assumptions 3.8 and 3.9 imply the following orthogonality conditions: 6

E[ugitxgis] = 0, s = 1, 2, ..., Tig , i = 1, 2, ..., Ng, g = 1, 2, ...,m, (5.17)

E[ugitygit−1] = 0, t = 1, 2, ..., Tig , i = 1, 2, ..., Ng, g = 1, 2, ...,m. (5.18)

Consequently, the moment conditions used for the estimation of the cluster-specific pa-
rameters are:

E[ugitzgit] = 0, t = 1, 2, ..., Tig , i = 1, 2, ..., Ng, g = 1, 2, ...,m. (5.19)

Note that we only use contemporaneous exogeneity for estimation of the cluster-specific
parameters using cluster-specific data which is in line with Hsiao et al. (2019). According
to Wooldridge (2010) contemporaneous exogeneity can be exploited when the variance-
covariance of the model is diagonal as it is in each cluster.

Additionally, we also assume that the zgit is full rank which means that the regressors
vary within cluster.

Assumption 5.1. OLS: The matrix E[zgitz
′
git] is full rank.

GLS: E[ugu
′
g|Zg] is positive definite and the matrix E[Z ′

gE[ugu
′
g]

−1Zg] = Qg is non-
singular.

6. STATISTICAL PROPERTIES

In this section, we present the statistical properties of the cluster-specific estimators, the
Mean Cluster estimator and the variance-covariance estimators using sequential asymp-

6According to Chamberlain (1987), the conditional moment E[s|g(w)] = 0 restriction implies that
E[g(w)s] = 0 for any function g(.) where s and w are two random variables.
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totic theory with the number of individuals per cluster (Ng) growing to infinity and the
time dimension (Tig ) fixed. This implies that the total number of observations per cluster

(ng =
∑Ng

ig
Tig ) grows to infinity.

For convenience, we use the indexes ig to refer to individual i belonging to cluster g
and tig for the time observation t of individual ig.

6.1. Cluster specific estimators

Theorem 6.1. If i) Assumptions 3.1 to 3.15 and 5.1 hold, ii) {yig , xig}
Ng

ig=1 is a sequence

of random vectors containing Tig observations ∀g, iii) Ng → ∞ and Tig fixed (ng → ∞),
then
a) θ̂g,GLS

p→ θg, b)
√
ng(θ̂g − θg)

d→ N(0, Qg).

where Qg = plim
ng→∞(n−1

g Z ′
gΩ

−1
g Zg)

−1.

6.2. Variance Covariance Estimators

Theorem 6.2. If i) Assumptions 3.1 to 3.15 and 5.1 hold, ii) plim
ng→∞

∑Ng

ig

∑Tig

tig
n−1
g Cigtig

C ′
igtig

=

Mg with ||Mg||F < ∞, iii) νigtig ∼ iid(0, σ2
ν), iv)

lim
ng→∞

∑Ng

ig

∑Tig

tig
n−1
g Cigtig

Rigtig
= 0,

v) Ng → ∞ and Tig fixed (ng → ∞) then

a) Ω̂g
p→ Ωg, b)

√
ng(Ω̂g − Ωg)

d→ N(0, var(Ω̂g)).

6.3. Mean Cluster Estimator

Theorem 6.3. If i) Assumptions of theorems 6.1 and 6.2 hold ∀g, then

√
N(ˆ̄θ − E[θg])

d→ N(0, Q),

where Q =
∑

g πgQg.

7. MISSPECIFICATION OF THE VARIANCE-COVARIANCE MATRIX

As mentioned in Section 4, the FGLS estimator in step 1 is non-robust to violations
of the assumptions 3.7 and 3.10 that state that λgit and ϵgit are not serially correlated
and homoskedastic within cluster. The reason is that under contemporaneous exogeneity,
the FGLS is consistent only if the variance-covariance matrix of the model is diagonal.
When the variance-covariance matrix of the model is not diagonal, one requires the
stronger condition of strict exogeneity of all regressors included in the model. But in
model 3.2, the strict exogeneity of all right-hand side regressors does not hold because
the lag of the dependent variable is present (Wooldridge (2010)). Then if λgit and ϵgit
are serially correlated or/and heteroskedastic within cluster, it is better to estimate the
cluster-specific parameters using OLS with a fully robust variance estimator.
The correlation of ϵgit and/or λgit within cluster could be caused due to sub-clustering.

For instance, students within schools belong to the same village. In this situation, we can
use a one-way sub-cluster fully robust variance estimator per cluster. If we index by jg
the sub-clusters in cluster g and we assume that there is no cross-correlation across sub-
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clusters, we can use the following within cluster one-way fully-robust variance estimator:

̂V ar(β̂g) = (
∑
jg

X ′
jg Ω̂

−1
jg
Xjg )

−1(
∑
jg

X ′
jg Ω̂

−1
jg
ûjg û

′
jg Ω̂

−1
jg
Xjg )(

∑
jg

X ′
jg Ω̂

−1
jg
Xjg )

−1.

The estimator is fully-robust for heteroskedasticity and serial-correlation within sub-
cluster jg usingm

−1
jg

∑
jg
ûjg û

′
jg

as an estimator of E[ujgu
′
jg
]. If the number of sub-clusters

(mjg ) grows and the number of observations within the sub-cluster is fixed, the Wald
t-statistic is asymptotically normal (Wooldridge (2003), Cameron and Miller (2015)). If
the number of sub-clusters is fixed, the sub-cluster robust variance-covariance estimator
is downward-biased (Cameron and Miller (2015), Wooldridge (2003)) and the Wald t-
statistic is no longer asymptotically normal distributed (Cameron and Miller (2015),
Wooldridge (2003)). In this situation, the wild-cluster bootstrap-t method proposed by
Cameron et al. (2008) cannot be used to provide valid inference for the Mean Cluster
estimator. The reason is that the wild-cluster bootstrap-t is proposed for a homogeneous
model. To provide valid inference for the Mean Cluster estimator proposed in this paper
when there is within sub-cluster correlation and a small number of sub-clusters, there
is a need to extend the one-way wild-cluster bootstrap-t method for the Mean Cluster
estimator.
Another issue is that the one-way sub-cluster fully robust variance estimator is valid

under the assumption that observations are not correlated across sub-clusters. A solution
is using a two-way sub-cluster fully-robust variance estimator, but this estimator requires
that the number of sub-clusters and the number of time observations per individual within
cluster grow to infinity. If this is not the case, there is a need to extend the two-way wild-
cluster bootstrap-t method for the Mean Cluster estimator.

8. RELATIONSHIP OF THE MEAN CLUSTER ESTIMATOR WITH OTHER
ESTIMATORS

8.1. GLS estimation of a two-level panel data model with interactions of cluster
dummies with the regressors

In this subsection, we compare the Mean Cluster estimator of model 3.2 with FGLS

estimation of two-level panel data containing the interactions of cluster dummies (s
(g)
i )

with the regressors in the model.

Corollary 8.1. FGLS estimation of a model with interactions between the regressors
and m cluster dummies is not equivalent to the Mean-Cluster FGLS estimator.

To proof Corollary 8.1, we can re-write model as a two-level panel data model with

interactions of m cluster dummies (s
(g)
i ) with the regressors:

yit =

m∑
g=1

αgs
(g)
i +

m∑
g=1

ρgyit−1s
(g)
i +

m∑
g=1

s
(g)
i x′itβg + x′itλit + ϵit.

(8.20)

FGLS estimation of the whole system of equations is equivalent to the first step of the
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Mean Cluster FGLS estimator if the random terms ϵit and λit are not correlated across
clusters (Assumption 3.7 and Assumption 3.15 hold). If assumptions 3.7 and 3.15 do not
hold, the first step of the Mean Cluster estimator is less efficient than FGLS estimation
on the whole system of equations (Greene (2008)).
In addition, we decompose the heterogeneous parameters as a sum of their overall means
and the deviations from their cluster means as follows:

αg = E[αg] + (αg − E[αg]), (8.21)

ρg = E[ρg] + (ρg − E[ρg]), (8.22)

βgit = E[βgit] + (βg + λit − E[βgit]). (8.23)

Using these new expressions to re-write the three-level panel data 3.2 as a two-level panel
data model, we obtain:

yit = E[αg] +

m∑
g=1

(αg − E[αg])s
(g)
i + E[ρg]yit−1 +

m∑
g=1

(ρg − E[ρg])yit−1s
(g)
i + x′itE[βgit]+

m∑
g=1

s
(g)
i x′it(βg − E[βgit]) + x′itλit + ϵit.

(8.24)

Model 8.24 can be expressed in matrix form as follows:

y = ιnE[αg] + S(α− ιmE[αg]) + E[ρg]y−1 + y1,−1(ρ− ιmE[ρg]) +XE[βgit]

+X1(β − ιm ⊗ E[βgit]) +X2λ+ ϵ.
(8.25)

where y is a vector collecting the observations of all the clusters (n =
∑m

g ng ), S
is a matrix of m dummy variables with dimensions n × m, y−1 is a vector collecting
the first lag of the dependent variable with dimensions n × 1, y1,−1 is a block-diagonal
matrix containing all the cluster-specific lagged variables yg,−1 with dimensions n ×m,
X is a matrix collecting K regressors with dimensions n × K, X1 = diag(Xg) is a
block-diagonal matrix that collects the group-specific matrices of regressors (Xg) with
dimensions n ×Km, X2 = diag(x′it) with x′it in the diagonal with dimensions n ×Kn.
In addition, ιn is a vector of ones with dimensions n × 1, ιm is a vector of ones with
dimensions m× 1, (α− ιmE[αg]) is a vector of dimensions mx1, β is a vector containing
all the m cluster slope parameters with dimensions mK×1, λ is a vector with dimensions
nK × 1 stacking up λit.
If we assume that the deviations of the parameters from their cluster means are fixed,
we cannot estimate model 8.25. The reason is that the matrix containing all regressors of
model 8.25 is rank deficient as a consequence of the perfect linear relationship between
ι and S as well as between X and X1. In other words, there is perfect multicollinearity
in the model. For consistent estimation of model 8.24, we need to impose the following
restrictions:

m∑
g=1

(αg − E[αg]) = 0, (8.26)
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m∑
g=1

(ρg − E[ρg]) = 0, (8.27)

m∑
g=1

(βg − E[βgit]) = 0. (8.28)

In conclusion, the Mean Cluster estimator can be interpreted as a method that imposes
these restrictions through a two-step procedure. In addition, the Mean Cluster estimator
is the most efficient estimator if the clusters are uncorrelated with each other. If the
clusters are inter-correlated, the best estimation procedure is a pooled estimation of
model 8.24 imposing the restrictions 8.26 to 8.28.

Corollary 8.2. FGLS estimation of a model with interactions between the regressors
and m− 1 dummies is not equivalent to the Mean-Cluster FGLS estimator.

Corollary 8.2 states that estimation of model 8.25 including m − 1 dummies and their
interactions with the regressors does not retrieve the average partial effects. To see this
clearer, consider the following modified model:

y = ιnαm + S̃ψ1 + ρmy−1 + ỹ1,−1ψ2 +Xβm + X̃1ψ3 +X2λ+ ϵ. (8.29)

where S̃ contains the first m− 1 columns of S, ỹ1,−1 contains the first m− 1 columns of

matrix y1,−1 and X̃1 contains the first (m− 1)K columns of the matrix X. This means
that the baseline category is the cluster m.
It is clear from model 8.25 that the estimated coefficients of the regressors are just the
cluster-specific coefficients for cluster m. The estimated coefficients of the interaction
terms of the regressors with the m − 1 dummies (ψ2, ψ3) are the deviations of their
parameters from the coefficient of the baseline cluster. In order to obtain the average
partial effects, one needs to take a four-step procedure to retrieve the cluster-specific
parameters. The estimation procedure of the average partial effects using model 8.25 is
the following:

Step 1: Estimate model 8.25 using pooled FGLS.

Step 2: Obtain the m − 1 cluster-specific estimated parameters by adding their
deviations to the cluster-specific parameterm. For instance, the estimated intercept
of cluster j is equal to α̂j = α̂m + ψ̂1,j .

Step 3: Obtain the standard errors of the cluster-specific parameters. For instance,

s.e.(α̂j) =
√
var(α̂m) + var(ψ̂1,j) + 2cov(α̂m, ψ̂1,j).

Step 4: Obtain the average of the cluster-specific parameters.

In conclusion, the Mean Cluster estimator is a straightforward procedure to estimate the
average partial effects. It is the most efficient estimator if the clusters are not correlated
across each other. But if the clusters are correlated across each other, one needs to
estimate 8.25 using the procedure described above with FGLS.



Dynamic Heterogeneous Unbalanced Panel Data Models with Clustering 21

8.2. First-difference GMM estimator

Corollary 8.3. The first-difference GMM (Arellano and Bond (1991)) estimator of
model 3.2 is an inconsistent estimator of E[ρg] and E[βgit] and it is equal to a weighted
averaged of the cluster-specific parameters.

Proof. Taking the first-difference of model 3.2 and using the deviations of the cluster-
specific parameters from their overall means (8.21, 8.22 and 8.23) leads to the following
model:

∆ygit = E[ρg]∆ygit−1+(ρg−E[ρg])∆yit−1+∆x′gitE[βgit]+∆(x′git(βgit−E[βgit]))+∆ϵgit.
(8.30)

If we stack up the cluster-specific first-differenced observations, we obtain:


∆y1
∆y2
...

∆ym

 = E[ρg]


∆y1,−1

∆y2,−1

...
∆ym,−1

+

∆X1

∆X2

...
∆Xm

E[βgit]+


∆̃y1,−1

∆̃y2,−1

...

∆̃ym,−1

+

∆̃X1

∆̃X2

...

∆̃Xm

+

∆ε1
∆ε2
...

∆εm

 . (8.31)
with ∆̃Xg stacking up ∆(x′git(βgit−E[βgit])), and ∆̃yg,−1 stacking up (ρg−E[ρg])∆ygit−1.

If we collect the regressors ∆yg,−1 and ∆Xg in a matrix ∆Zg, the parameters of interest

E[ρg] and E[βgit] in the column vector θ̃, and the random components ∆̃yg,−1, ∆̃Xg,
∆εg in a composite error term ∆ũg we obtain:

∆y1
∆y2
...

∆ym

 =


∆Z1

∆Z2,
...

∆Zm

 θ̃ +

∆ũ1
∆ũ2
...

∆ũm

 . (8.32)

Then, using as instrumental variables ygit−s,∀s > 1, xgi and calling the matrix of instru-
ments W = diag(Wg) we get that the first-difference GMM estimator is equal to:

ˆ̃
θF−GMM = (∆Z ′WV −1W ′∆Z)−1(∆Z ′WV −1W ′∆y),

with V = E[∆ũ∆ũ′] = diag(E[∆ũg∆ũ
′
g]) = diag(Vg).

Then, the first-difference GMM estimator (
ˆ̃
θF−GMM ) can be re-written as follows:

ˆ̃
θF−GMM = θ̃ + (∆Z ′WV −1W ′∆Z)−1(∆Z ′WV −1W ′∆ũ),

plim
ˆ̃
θF−GMM = θ̃ + (plim

1

n
∆Z ′WV −1W ′∆Z)−1(plim

1

n
∆Z ′WV −1W ′∆ũ).

We can see that the last term does not vanish because of the presence of ∆y−1(ρg−E[ρg])
in the composite error term ∆ũ.
In addition, we can re-write the first-difference GMM estimator as the weighted sum of
the cluster-specific first-difference GMM estimators as follows:
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ˆ̃
θF−GMM = (

∑
g

∆Z ′
gWgV

−1
g W ′

g∆Zg)
−1(

∑
g

∆Z ′
gWgV

−1
g W ′

g∆yg),

ˆ̃
θF−GMM = (

∑
g

∆Z ′
gWgV

−1
g W ′

g∆Zg)
−1(

∑
g

∆Z ′
gWgV

−1
g W ′

g∆Zg θ̂g,F−GMM ).

Applying the plim operator to the last expression gives:

plim
ˆ̃
θF−GMM = (plim

1

n

∑
g

∆Z ′
gWgV

−1
g W ′

g∆Zg)
−1(plim

1

n

∑
g

∆Z ′
gWgV

−1
g W ′

g∆Zg θ̂g,F−GMM ),

plim
ˆ̃
θF−GMM =

∑
g

wgA
−1bgθg,

with A = plim
n→∞

1
n

∑
g ∆Z

′
gWgV

−1
g W ′

g∆Zg, bg = plim
ng→∞

1
ng

∆Z ′
gWgV

−1
g W ′

g∆Zg, and wg =

lim
ng

n .

The reason for the inconsistency of the first-difference GMM estimator is that ignoring
heterogeneity in the coefficients causes endogeneity and there are no available instrumen-
tal variables no matter how long is the time dimension. In contrast, the Mean-Cluster
estimator is a consistent estimator of the average partial effects.

8.3. Mean-Group estimator

Corollary 8.4. When the time dimension is equal to 3, the Mean-Group estimator is
unfeasible.

Corollary 8.5. When the time dimension is long, the Mean-Cluster estimator and the
Mean-Group estimator are consistent estimators of the average partial effects E[θg] of
model 3.2 under stratified sampling.

Proof. The Mean-group estimator is equal to:

θ̂MG =
1

N

∑
g

∑
ig

θ̂ig,OLS , (8.33)

with θ̂ig,OLS = (Z ′
ig
Zig )

−1(Z ′
ig
yig ).

Now, we have that:

plimθ̂MG =
1

N

∑
g

∑
ig

plimθ̂ig,OLS , (8.34)

plimθ̂MG =
∑
g

πgθg = E[θgit], (8.35)

because:

plimθ̂ig,OLS = (plim
1

ng
Z ′
igZig )

−1(plim
1

ng
Z ′
igyig ),
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plimθ̂ig,OLS = θg + (plim
1

ng
Z ′
igZig )

−1(plim
1

ng
Z ′
igεig ),

plimθ̂ig,OLS = θg.

9. CLUSTER SAMPLING

In this section, we present the assumptions under cluster sampling. The identification
strategy proposed in section 5 is still valid while the estimation strategy proposed in
section 4 needs to be modified by using weights equal to 1/m. In addition, the statistical
properties of the Mean Cluster estimator are different from the ones presented in section
6.

9.1. Assumptions

For the cluster sampling setting, we replace assumptions 3.1, 3.2, and 3.3 by the following
ones:

Assumption 9.1. The proportion of observed clusters q is lower than 1.

This assumption means that the number of observed clusters m is not equal to the total
number of clusters in the population.

Assumption 9.2. Cluster size is homogeneous Ng = Nκ with κ ∈ (0, 1) and Tig = T .

Under this assumption, the number of observations per cluster is equal and we are back
in a balanced panel data setting. This assumption is done for convenience to derive
the asymptotic distribution of the Mean Cluster estimator under cluster sampling. An
extension to a setting with an unbalanced cluster size under cluster sampling is left for
further research.

Assumption 9.3. Clusters are asymptotically negligible.

lim
N→∞

Ng

N
= 0.

This assumption is in line with Hansen and Lee (2019) and it allows the number of
individuals within clusters to grow with the total number of individuals but not at a
proportional rate.

Assumption 9.4. The number of clusters grows at a slower rate than the square of the
total number of observations in the cluster.

m is a monotonic function of ng,
√
m

ng
→ 0 as ng → ∞.

This condition is necessary to guarantee the consistency of the Mean Cluster estimator.
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Assumption 9.5. Random cluster additive specific effects α1,g.

E[α1,g] = 0

E[α2
1,g] = σ2

α1
.

Assumption 9.6. Random cluster specific persistence parameter.

ρg ∈ (−1, 1),

with α2,g = ρg − E[ρg] and E[α2
2,g] = σ2

α2
.

Assumption 9.7. Random cluster-individual-time specific coefficients.

βgit = βg + λgit,

E[λgitλ
′
g′i′t′ ] =

{
∆λg if g = g′, i = i′andt = t′,

0 otherwise.

with α3,g = βg − E[βg] and E[α3,gα
′
3,g′ ] = ∆α3

if g = g′ and 0 otherwise.

The unobserved coefficient vector is composed of a cluster-specific coefficient vector (βg)
and a heteroskedastic random component (λgit) that captures the multiplicative hetero-
geneity over time for each individual of cluster g.

Assumption 9.8. Cluster specific effects have non-zero mean conditional on covariates.

E(αg|xgi1, xgi2, ..., xgiT , ygit−1) ̸= 0,

with αg = [α1,g α2,g α′
3,g]

′.

We could also assume that E[α1,gzgit] ̸= 0, E[α2,gygit−1] ̸= 0, E[α′
3,gxgit] ̸= 0. The latter

means that regressors are freely correlated to cluster unobserved heterogeneity.

Assumption 9.9. The random cluster-individual-time effects have zero mean conditional
on the covariates and cluster effects.

E[λgit|xgi1, xgi2, ..., xgiT , ygit−1, αg] = 0.

Assumption 9.10. Strict exogeneity of the covariates with the disturbance term condi-
tional con cluster effects.

E[εgit|xgi1, xgi2, ..., xgiT , ygit−1, αg] = 0.

9.2. Statistical properties of the Mean Cluster Estimator under cluster sampling

Theorem 9.1. If i) assumptions 3.10 to 3.15 and 9.1 to 9.10 hold, ii) Ng = Nκ with

κ ∈ (0, 1), iii) ˆ̄θ is consistent and asymptotically normal.
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√
m(ˆ̄θ − E[θg]) d

→N(0,△α),

with △α =

σ2
α1

0 0
0 σ2

α2
0

0 0 ∆α3

.
Condition ii) states that clusters have a homogeneous number of individuals. Under this
condition, the Mean Cluster estimator is

√
m-consistent. The derivation of the asymptotic

distribution of the Mean Cluster estimator under cluster sampling with heterogeneous
cluster sizes is left for further research.

10. ARE CLUSTER EFFECTS ENOUGH?

The estimator proposed in subsection 4 can have two potential biases: i) incidental pa-
rameter bias, and ii) misspecification bias.
The incidental parameter bias occurs when the number of observations per group ng

is small, which happens when the number of individuals per cluster is small. A solution
for this issue is debiasing.
The estimator is also subject to misspecification bias if the assumption E[λgit|xgi, ygit−1] =

0 fails. This happens when fixed cluster effects are not enough to account for possible
correlated residual cluster-individual specific unobserved heterogeneity. Another possi-
ble source of misspecification bias occurs when the assumed coefficient structure is not
correct. We can see that βgit = βgi + λgt is also a plausible structure. In this case,
βgit = βg + λgit is not the correct specification. In order to address these issues, we
present specification tests in the following section. we also present an extension of model
1.1 that includes cluster-individual additive effects.
Finally, we abstract from misspecification bias caused by an incorrect clustering struc-

ture because we assume that clustering is known. This is possible when the available
sample is drawn from a population that is divided into well-known clusters such as a
country and its municipalities. Examples of these type of data are longitudinal data for
households, and firm-employee matched data. The clustering assumption used in this
paper is different from the one presented by Bester and Hansen (2016).

11. SPECIFICATION TESTS

In order to test the assumption of clustered heterogeneity, we propose two specification
tests that are extensions of the Hausman test (Hausman and Taylor, 1981).
First, testing the null hypothesis of cluster additive and multiplicative heterogeneity

versus cluster-individual additive and multiplicative heterogeneity is not feasible when
the time dimension is as short as 3.
Second, testing the null hypothesis of complete homogeneity versus cluster additive

and multiplicative heterogeneity is possible. In this case, we propose to compare the
Mean Cluster estimator with the Pooled OLS estimator. More specifically, the null and
alternative hypothesis are the following:
Ho : β̂MC consistent and inefficient, β̂POLS consistent and efficient.
H1 : β̂POLS inconsistent and β̂MC consistent and most efficient.
The statistic is given by:
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Q = (β̂MC − β̂POLS)
′V ar(β̂MC − β̂POLS)

−1(β̂MC − β̂POLS),

follows a χ2
df=K .

In addition, testing the null hypothesis of cluster additive and multiplicative effects
versus cluster-individual additive and cluster multiplicative heterogeneity is also viable.
In this case, we propose to use a Hausman-type test that compares Mean Cluster estima-
tors vs. a Mean Cluster First-difference GMM estimator or the Mean Cluster estimator
using a Mundlak approach.
The study of the statistical properties of these tests is left for further research.

12. RELAXING THE ASSUMPTION OF CLUSTER ADDITIVE SPECIFIC
EFFECTS

12.1. Initial conditions generated from the stationary distribution

In this subsection, we relax the assumption of additive cluster specific effects and al-
low for the presence of additive cluster-individual correlated random effects. Therefore,
Assumption 3.5 is replaced by the following one:

Assumption 12.1. Correlated cluster-individual additive specific random effects α1,gi.

The inclusion of cluster-individual additive effects allows to control for endogeneity
of the regressors that might not be captured by the cluster additive fixed effects. In
particular, we consider the following extension of the model 1.1:

ygit = α1,gi + ρgygit−1 + x′gitβgit + εgit, t = 1, ..., Tig , (12.36)

where α1,gi is a cluster-individual specific correlated random effect.
The estimation of model 12.36 with short time dimension has two main problems: i)

the incidental parameter bias caused by the presence of the cluster-individual specific
effects and ii) the impact of unobserved initial values (ygi0) on the estimation.

In order to deal with the incidental parameter bias, we use a mean conditional approach
instead of a linear difference approach. We choose the mean conditional approach because
it is appropriate for heterogenous dynamic panel data models. As explained by Hsiao
(2020), in this approach it is needed to use a linear approximation of E(αgi|xit) to model
the correlation of the regressors with the cluster-individual unobserved effects (This was
a suggestion of Mundlak (1961) and Chamberlain (1979)). Following this suggestion, we
re-express α1,gi as a linear projection on the individual means of the regressors:

α1,gi = x̄′gi.φg + υgi, (12.37)

where x̄gi. = T−1
∑T

t=1 xgit, υgi is an orthogonal error term such that E(υgi|x̄gi.) = 0,
and φg is a vector of unobserved parameters.
This linear projection can be replaced in model 12.36 obtaining:

ygit = x̄′gi.φg + ρgygit−1 + x′gitβgit + υgi + εgit, t = 1, ..., Tig . (12.38)

Now, it is only left the problem of unobserved initial conditions dependency. Modifying
Assumption 3.11 to allow for the presence of cluster-individual additive effects yields:
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ygi0 = ρ
hig
g ygi,−hig

+ α1,gi
1− ρ

hig
g

1− ρg
+

hgi∑
l=0

ρlgx
′
gi−lβgi−l +

hig∑
l=0

ρlgεgi−l. (12.39)

If we assume that hgi → ∞, we can re-write the initial conditions as follows:

ygi0 =
αgi

1− ρg
+

∞∑
l=0

ρlgx
′
gi−lβgi−l +

∞∑
l=0

ρlgεgi−l. (12.40)

Following Hsiao (2020), we re-call the terms of equation 12.40 such that the equation of
the initial values is:

ygi0 =
αgi

1− ρg
+ ψgi0 + ε0i. (12.41)

Replacing the linear projection of the individual effects on the individual mean of the
regressors to obtain:

ygi0 =
x̄′gi.φg

1− ρg
+ ψgi0 +

υgi
1− ρg

+ ε0i. (12.42)

In this equation, it is clear that we still have the problem of incidental parameters due to
the presence of ψgi0. In order to deal with this issue, we follow Hsiao (2020) and assume
that E(ψgi0|xgi) = x̄′giϕ

∗
g. This is possible under Assumptions 3.11 and 3.12.

The combination of 12.38, 12.42, and E(ψgi0|xgi) = x̄′giϕ
∗
g leads to the system of

equations:

ygit = x̄′gi.φg + ρgygit−1 + x′gitβgit + ε∗git, t = 1, ..., Tig ,

ygi0 =
x̄′gi.φg

1− ρg
+ x̄′giϕ

∗
g +

υgi
1− ρg

+ ε0i. (12.43)

where ε∗git = εgit + υgi.
For estimation of the system 12.43, we propose two different methodologies. The first

one is a Bayesian hierarchical estimator with a prior for the initial conditions. The second
one proposes to estimate the equation of the dependent variable conditional on the initial
conditions. These methods are described in the following subsections:

12.1.1. Bayesian estimation In order to set up the Bayesian estimator, we define the
likelihood of the observed data by:

Lζ|y,y−1,X =

m∏
g

Ng∏
i

L(ζg|ygi, Xgi), (12.44)

where ζg = [ρg βg ϕg σ2
ε∗ ]

′, ζ = [ζ1 ζ2 ... ζm]′, L(ζg|ygi, Xgi) = f(ygi|Xgi; ζg)
with f(ygi|Xgi; ζg) representing the multivariate normal distribution with variance equal
to σ2

εIT+σ
2
υιT ι

′
T and with expectation equal to µy,gi = ρgygi−1+diag(xgi)βgi+ιTig

x̄′gi.φg.
The prior distributions for the fixed parameters are:

(βg|β) ∼ N(β,H∆α,2H
′
∆α,2

),
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(ρg|ρ) ∼ N(ρ, σ2
ρ),

(φg|φ) ∼ N(φ, FF ′).

While the prior for the random effects is:

λgit ∼ N(0, H∆λ
H ′

∆λ
),

H∆λ
∼ LKJ(2).

The prior distribution of the variance σ2
ε is half-normal with a location parameter equal

to 0.5 and a scale parameter equal to 0.2. The prior distribution of the lower triangular
matrix H∆λ

is Lewandowski-Kurowicka-Joe (LKJ) with parameter equal to 2. The value
of the parameter of the LKJ prior means that the matrix has a low correlation.
Notice that the prior set-up imposes a non-centered parametrization on βgit such that:

βgit = βg +H∆λ
zgit, (12.45)

where zgit is a standard multivariate normal variable and H∆λ
is the Cholesky factor of

the variance-covariance matrix of λgit.
This non-centered parameterization improves the convergence of the Hamiltonian Monte
Carlo (HMC) algorithm because it reduces the correlation of the parameters (Frühwirth-
Schnatter and Tüchler, 2008; Betancourt and Girolami, 2013). This reduction of the
correlation permits the exploration of the whole parameter space improving the mixing
of the chains.

Remark 12.1. According to Rossi and Allenby (2009) and Rendon (2013), imposing
prior distributions only for the parameters of the model leads to a fixed effects specifi-
cation. Thus, there is not any prior specification for the hyper-parameters of the priors.
Therefore, a Bayesian model for a fixed effects specification has only first-stage priors
while a Bayesian model for a random effects specification includes second-stage or hyper-
priors.

Under the simplifying assumption that ygi0 is known, we could just set up a naive
Bayesian estimator. But the assumption that ygi0 is fixed is not plausible. Its failure
leads to inconsistent estimates. This is why, we relax it and set up the following prior
distribution for the initial conditions:

fygi0
∼ N(µ0,gi, σ

2
y0
), (12.46)

where µ0,gi =
αgi

1−ρg
+ x̄′giϕ

∗
g, and the prior distribution of the variance σ2

y0
is half-normal

with location parameter equal to 0.5 and scale parameter equal to 0.2.

Remark 12.2. Assuming that ygi0 comes from the stationary distribution means that
the initialization of the process happened a long time ago (hig → ∞). This implies that
the parameter bg is equal to 0.
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12.1.2. Conditioning on the initial value Another option for consistent estimation of
the parameters of interest is the estimation of model 12.36 after conditioning on the
initial value. For this purpose, we follow Hsiao (2020) and condition the first equation of
the system 12.43 on the initial value ygi0 leading to:

ygit = x̄′gi.φ
∗
g + ρgygit−1 + x′gitβgit + ygi0b̃g + ε∗git, t = 1, ..., Tig (12.47)

Estimation of this model can be done using the Mean Cluster estimator with FGLS in
the first stage.

12.2. Initial conditions not generated from the stationary distribution

A failure of the assumptions that the DGP of ygi0 is generated from the stationary distri-
bution (Assumption 3.11), and the stationary regressors (Assumption 3.12) renders the
Bayesian estimator presented in the previous section inconsistent. In order to relax the
assumptions 3.11 and 3.12, we assume that ygi0 is unknown and that it does not come
from the stationary distribution. This is done in order to avoid making assumptions
regarding the exogenous regressors. As explained by Heckman (1987) and stated in As-
sumption 3.12, we need to make assumptions about the stationarity of the explanatory
regressors and rule out time and age trends when the initial conditions are generated
from the stationary process.

12.2.1. Bayesian Estimation In order to propose a prior that does assume that initial
conditions (ygi0) are generated from the stationary distribution, we propose the following
joint prior:  y0

θ

 ∼ N

 ιmNT ⊗ µy

ιmNT ⊗ θ̄
, Σy,θ

 ,

with:

Σy,θ =

σ2
y0
ImN Σy0,β σy0,ρ

Σy0,β Σβ 0
σy0,ρ 0 Σρ

 .

A similar idea was presented by Sims (2000) and Heckman (1987). They defined a joint
prior for the initial conditions and the coefficient vector.
Implementation of this Bayesian estimator is not straightforward due to the corre-

lations between the initial conditions and the parameters of interest and the unknown
initial values and we leave it for further research.

12.2.2. Conditioning on the initial value Another approach to deal with the problem of
initial conditions dependency without making the restrictive assumptions of initial values
generated from the stationary distribution and stationary regressors (Assumptions 3.11
and 3.12) is to project the cluster-individual specific effects into the column space of
the regressors xgit and the initial condition ygi0 as proposed by Wooldridge (2005b)
and the individual average of the regressors (Mundlak approach Mundlak (1978)). More
specifically, the linear projection of the cluster-individual additive effects is equal to:

αgi = x̄′gib
∗
g + ygi0ag + ω̃gi, (12.48)
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Replacing this expression into model 12.36 leads to:

ygit = x̄′gib
∗
g + ygi0ag + ρgygit−1 + x′gitβgit + ω̃gi + εgit, t = 1, ..., Tig . (12.49)

In addition, we can project the initial conditions on the individual averages of the
regressors following ... :

ygi0 = x̄′gic
∗
g + εgi0, (12.50)

Stacking up the initial conditions and the augmented model, we can estimate model
12.47 using the Mean-Cluster estimator with a factor approach in the first stage following
Bai (2013). For this purpose, re-write the cluster specific model as follows:

Bg ỹgi = d1gix̄
′
gib

∗
g+d1giygi0ag+X̃giβgi+d1giω̃gi+d2gix̄

′
gic

∗
g+εgi, i = 1, ..., Ng. (12.51)

where ỹgi = [ygi0, ygi1, ..., ygiT ]
′, εgi = [εgi0, εgi1, ..., εgiT ]

′, X̃gi = diag(x̃′git) with x̃git =

[0, xgit], x̄gi =
∑T

t T
−1(xgit), d1gi = [d1git], d1git = 1 if t time period different to 0 and

0 otherwise, d2gi = [d2git], d2git = 1 if t time period equal to 0 and 0 otherwise.

Bg =



1 0 0 ... 0 0
−ρg 1 0 0 ... 0
0 −ρg 1 0 ... 0
...
.
.
0 0 0 ... −ρg 1


.

Pre-multiplying model 12.51 by Γg = B−1
g we obtain:

ỹgi = Γgd1gix̄
′
gib

∗
g+Γgd1giygi0ag+Γgd1giX̃giβgi+Γgd1giω̃gi+Γgd2gix̄

′
gic

∗
g+Γgεgi, i = 1, ..., Ng.

(12.52)

with Γg =


1 0 0 0 ... 0
ρg 1 0 0 ... 0
ρ2g ρg 1 0 ... 0
ρ3g ρ2g ρg 1 ... 0
...

ρT−1
g ρT−2

g ρT−3
g ... ρg 1

.
The expression of B−1

g is presented by Moreira (2009).
Now, we can set up the discrepancy function between the variance-covariance of the

transformed augmented model 12.52 and its sample estimator:

ℓg = log|Σg|+ tr[SgΣ
−1
g ], (12.53)

where

Sg =
1

Ng

∑
gi

(κgiκ′
gi), (12.54)

with κgi = ỹgi − Γgd1gix̄
′
gib

∗
g − Γgd1giygi0ag − Γgd1giX̃giβgi − Γgd1giω̃gi − Γgd2gix̄

′
gic

∗
g,

d2,gi equal to 1 if t equal to 0 and 0 otherwise, d1,gi equal to 1 if t equal to 1 and
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0 otherwise, Σg = E[Sg]. In addition, notice that κgi = ΓgιTig
(ω̃gi) + Γg(ugi) with

ugi = d1gix̃giλgi + εgi.
We estimate the cluster specific parameters of interest (ρg, βg, △g, σ

2
ω,g, and σ

2
ε,g) by

maximizing the discrepancy function ℓg multiplied by −Ng/2. For given Σg, the estimator
of the coefficients of interest is the GLS estimator per cluster:

θg = ( ˜̃X ′
gΣg

˜̃Xg)
−1( ˜̃X ′

gΣg ỹg), (12.55)

where θg = [ρg, βg, ag, b
∗
g, c

∗
g],

˜̃Xg = [ỹg,t−1, d1gX̃g, d1gy0,g, d1gx̄g, d2gx̄g].
For estimation of the variance-covariance matrix, we need to modify the estimator

proposed in Subsection 4.1. The modified procedure is presented below.

Covariance Estimation In order to make GLS feasible, we propose the following
estimation method of the variance-covariance components of △λg

, σ2
ω̃g
, σ2

ε0,g , and σ2
εg .

More specifically, Σg is equal to the following block diagonal matrix:

Σg =

(
σ2
ε0,g 0

0 Ω̃g

)
(12.56)

where Ω̃g = σ2
ω̃g(INg

⊗ιT )+diag(Xg)(INgT ⊗∆λg
)diag(Xg)+σ

2
εgINg

if Tg = T . if Tg ̸= T ,
one just need to set up the adequate design matrix for allowing unbalancedness in the
time dimension.
First, we derive the linear decomposition of the variance-covariance matrix for each clus-
ter:

Σg =

K∑
k=1

K∑
k′=1

σλg,kk′Hg,kk′,λg + σ2
ϵgIng + σ2

ω̃g(INg ⊗ ιT ). (12.57)

with the design matrices equal to:

Hg,kk′,λg = X̃g,kX̃
′
g,k′ ,

where X̃g,k = diag(xgit,k).
The estimation procedure is different to the one presented in subsection 4.1 because the
model presents cluster-individual fixed effects.
Step 1: we obtain ˜̃yg = yg − yg,−1ρ̂GMM − Xgβ̂g,GMM where GMM stands for first-

difference GMM estimation.

Step 2: we regress ˜̃yg on ιT ⊗ x̄gi, and ιT ygi0.

Step 3: we obtain the residuals of regression of step 2, and call them rg.

Step 4: we regress ygi0 on x̄gi, and we obtain the residuals calling them rg0.

Step 5: we use the residuals r̃g = [rg0, rg].
Then, it can be shown that:

E[r̃g r̃
′
g] = Σg. (12.58)

Replacing expression (4.10) into equation (12.58) and applying the vec operator, we
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obtain:

vec(E[r̃g r̃
′
g]) =

K∑
k=1

K∑
k′=1

σλg,kk′vec(Hg,kk′,λg
) + σ2

ϵgvec(INgT ) + σ2
ω̃g
vec(INg

⊗ ιT ).

(12.59)

Now, we can rewrite the previous expression in matrix form:

vec(E[r̃g r̃
′
g]) = B̃λg

vec(△λg
) + σ2

ϵgvec(INgT ) + σ2
ω̃g
vec(INg

⊗ ιT ). (12.60)

In order to avoid double estimation of the covariances in the variance-covariance matrix,
we use the identity vec(A) = Dvech(A) where is A is square symmetric matrix and we
re-express the previous equation as:

vec(E[r̃g r̃
′
g]) = B̃λgvech(△λg ) + σ2

ϵgvech(INgT ) + σ2
ω̃g
vech(INg ⊗ ιT ). (12.61)

The expectation of the outer product of the residuals is replaced by the point estimator
of the OLS residuals for each cluster and we add the error ν2,g that captures the sampling
error.

vec(r̃g r̃
′
g) = B̃λg

vech(△λg
) + σ2

ϵgvec(INgT ) + σ2
ω̃g
vech(INg

⊗ ιT ) + ν2,g. (12.62)

Finally, notice that 12.62 is a simple linear model that can be rewritten as:

R̃g = C̃g η̃g + ν2,g,

where:

R̃g = vec(r̃g r̃
′
g),

C̃g = [B̃λg
D vec(INgT ) vech(INg

⊗ ιT )],

Bλg
= [vec(Hg,11,λg

) vec(Hg,12,λg
) ... vec(Hg,KK,λg

)],

ηg = [vech(△λg
)′ σ2

ϵg ]
′.

Now, the estimators of the elements of variance-covariance are obtained by minimizing
the following penalized loss function:

L(ηg) = (R̃g − C̃gηg)
′(R̃g − C̃gηg) + τ ∥ η̃g ∥22,

with τ ∈ [0, 2min(ζgl)] where ζgl is the eigenvalue l of the matrix C̃ ′
gC̃g.

Step 6: Iterate until convergence.

Remark 12.3. If we assume that λgit is not present, we can estimate the cluster-specific
parameters using different estimation procedures. If we keep the model in levels and we
consider the cluster heterogeneity, we can use the IFGLS estimator of Phillips (2010), or
the Within debiased estimator proposed by Breitung et al. (2022). If we first-difference
the model within clusters, we can use the augmented estimator proposed by Chudik and
Pesaran (2022) to estimate the cluster-specific parameters.
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13. HOW ABOUT CROSS-SECTIONAL DEPENDENCE?

13.1. A model including common factors

The models 1.1 and 12.36 do not consider cross-sectional correlation even though cross-
sectional dependence is a common problem in panel data.
Cross-sectional dependence is caused by spatial dependence or common shocks ( Bai

and Li (2021)) and it can be modeled either using spatial or factor models or a combi-
nation of both.
In this section, we extend model 1.1 in order to allow for cross-sectional dependence

using a factor model. For this purpose, we include a cluster-time-specific fixed effect since
it represents a cluster common factor. This is possible because the cluster-time specific

effect τgt can be rewritten as
∑m

i s
(g)
i fgt with s

(g)
i equal to 1 and 0 (Bonhomme and

Manresa (2015), Kapetanios et al. (2017), Bai and Li (2021)). Additionally, we include
time-specific effects that capture common global factors across clusters.
The extended model 3.2 includes cluster-time additive effects as well as time-fixed

effects as common factors for individual i in cluster g:

ygit = αg + γt + τgt + ρgygit−1 + x′gitβgit + εgit, t = 1, ..., Tig , (13.63)

In this setting, Assumption 3.12 is relaxed to allow for regressors that present common
factors.

Assumption 13.1. xgit are generated from:

xgit = µg + γt + τgt + ρxxgit−l + ωgit, |ρx| < 1.

13.2. Identification and Estimation

The Mean Cluster estimator presented in section 4 estimates consistently the parameters
of interest of model 13.63, which includes time and cluster-time dummies, by exploiting
the different moment conditions derived in this subsection.
We obtain moment conditions using the deviations with respect to cluster-time specific
averages:

ygit − yg.t = ρg(ygit−1 − yg.t−1) + (xgit − xg.t)
′βg

+ x′gitλgit − x′g.tλg.t + εgit − εg.t.
(13.64)

The cluster-time specific averages are equal to:∑
i ygit
Ng

= αg + γt + τgt + ρg

∑
i ygit−1

Ng
+

∑
i xgit
Ng

βg +

∑
i x

′
gitλgit

Ng
+

∑
i εgit
Ng

. (13.65)

We can just rename the transformed variables as:

ỹgit = ρg ỹgit−1 + x̃′gitβg + x̃′gitλgit + ε̃git. (13.66)

Thus, after this transformation we obtain the following moment conditions:

E(ũgitx̃gis) = 0, s = 1, 2, ..., T, i = 1, 2, ..., Ng, g = 1, 2, ...,m, (13.67)

E(ũgitỹgit−1) = 0, t = 1, 2, ..., T, i = 1, 2, ..., Ng, g = 1, 2, ...,m. (13.68)
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In addition, we need to add the full-rank condition for the transformed regressors.

Assumption 13.2. OLS: The matrix E(z̃gitz̃
′
git) is full rank.

GLS: E[ũgũ
′
g] is positive definite and E(Z̃ ′

gE[ũgũ
′
g]

−1Z̃g) is nonsingular.

14. LONG TIME DIMENSION

Until now, we have focused on a dynamic panel data model with clustering and short-
time dimension. As mentioned, the problems in this setting are incidental parameters
and initial conditions dependency. When the time dimension is long, one does not run
on the problem of initial conditions dependency but the issues of non-stationarity and
incidental parameter bias are still important.
More specifically, if the time dimension is long the assumption that the initial con-

ditions are generated from the stationary distribution is no longer needed (Assumption
3.11). The reason is that the influence of the initial conditions becomes negligible as
T → ∞.
In addition, the assumptions of stationary regressors and stationary dependent vari-

ables are necessary for the consistency and asymptotical normality of the Mean Cluster
estimator. The reason is that the stationarity of the regressors guarantees that the error
term of the model is integrated of order 0. In the case of non-stationary regressors, we
have two options: 1. transform the regressors to obtain stationarity or 2. estimate the
model in levels if there is co-integration between the dependent variable and the regres-
sors after including the lag of the dependent variable (Hamilton (1994)). In the last case,
the assumption of cluster-additive effects is crucial to obtain asymptotically normal esti-
mates within cluster (Choi (2015)). While in the presence of cluster-individual additive
effects, it is necessary to use the fully-modified OLS estimator proposed by Phillips and
Moon (1999) cluster per cluster or one can use OLS estimation with the Mundlak ap-
proach. If the dependent variable and the regressors are not cointegrated and the model
presents cluster-specific additive effects, it is unclear if cluster OLS estimation and the
Mean-Cluster estimator are consistent. The reason is that Phillips and Moon (1999) show
that pooled OLS is a consistent estimator of the long-run average regression coefficient
if the regressors are nonstationary and there is no cointegration for a model without
intercept and lagged dependent variable. Thus, further research is needed to verify the
consistency of the Mean-Cluster estimator when there is no co-integration and the model
presents cluster additive specific effects. However, the MC-OLS estimator is consistent
if the model presents additive cluster-individual specific effects, and there is no cointe-
gration if we use the Mundlak approach (Phillips and Moon (1999)). Finally, in order to
test for co-integration one can extend the test proposed by Im et al. (2003) such that
the model presents cluster-specific parameters instead of individual-specific parameters.
Concluding that there is co-integration would entail that ugit = x′gitλgit+ εgit is station-
ary, meaning that λgit could be considered as a random co-integrating vector. A study
of a co-integration test and the properties of the Mean-Cluster estimator when there is
no co-integration is out of the scope of this paper and both issues are left for further
research.
On the other hand, the problem of incidental parameter bias requires careful analysis.

First, the problem of incidental parameter bias in model 3.2 is not present. The intuitive
explanation is that we have increasing observations to estimate cluster-specific param-
eters. But if we allow for cluster-individual specific effects as in model 12.36, we need
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to be more careful. In this setting, the estimated cluster-specific parameters using the
within estimator are consistent and asymptotically normal if lim

Ng

Tig
= 0 and the regres-

sors are not stationary (Phillips and Moon (1999)). If the regressors are stationary, we
must debias the within estimator per cluster (Hahn and Newey (2004)). A workaround

to avoid the condition lim
Ng

Tig
= 0 or debiasing is to use the Mundlak approach and

project the cluster-individual specific effects into the column space of the regressors. Fi-
nally, model 13.63 suffers the problem of incidental parameter bias due to the presence of
cluster-individual specific effects and cluster-time specific effects. But the transformation
proposed in subsection 13.2 eliminates the incidental parameter problem.
Finally, the Mean-Cluster estimator and the Mean-Group estimator are consistent

estimators of the mean coefficients of model 3.2 when the time dimension (Subsection
8.3).

15. UNKNOWN CLUSTERING?

In this paper, we focused on known clustering because clustering with short T is not
feasible. The reason is that we only have T observations to determine the membership
of individual i into one of m possible groups (Bonhomme and Manresa (2015), Sarafidis
and Wansbeek (2021)). To be more specific, Bonhomme and Manresa (2015) show that
the Group Fixed Effects estimator converges to a pseudo value that might not be equal
to the true parameter when the time dimension is short.
On the contrary, there are several available methodologies when the time dimension

is long. One can find the Grouped Fixed Effects (GFE) estimator for a model with ho-
mogeneous slopes and cluster-time additive effects proposed by Bonhomme and Manresa
(2015) that is consistent when the number of individuals and the number of time periods
grow to infinity. In addition, they show that their estimator is suited for a time dimension
as short as 7. In addition, Bonhomme and Manresa (2015) explain that group misclas-
sification produces higher finite sample dispersion of the estimator. Finally, Bonhomme
and Manresa (2015) explain that the GFE estimator for a model with cluster-specific
slopes is consistent only when the time dimension grows to infinity.
Similarly, Su et al. (2016) developed a classifier-Lasso that allows the estimation of

unknown group-specific parameters when group membership is unknown. This estimator
is consistent when the number of individuals and the number of time observations grow
to infinity.

16. MEASUREMENT ERROR

In this Section, we focus on a model with measurement error in the dependent variable.
We assume that the observed dependent variable is given by:

y∗git = ygit + ϵgit, (16.69)

with ygit the true process, and ϵgit the measurement error with E[ϵgit] = 0, and
E[ϵ2git] = σ2

ϵ .
Since the lag of the observed dependent variable is included in the right-hand side of

the model, we end up with an endogeneity issue. Replacing ygit = y∗git − ϵgit into model
3.2, we obtain:

y∗git − ϵgit = ρgy
∗
git−1 + x′gitβgit + εgit + αgi − ϵgit−1. (16.70)
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In model 16.70, it is easy to see that the lag of the observed dependent variable is
correlated with the new composite error term εgit − ϵgit−1.

If we first-difference the model, we obtain:

∆y∗git −∆ϵgit = ρg∆y
∗
git−1 +∆x′gitβgit +∆εgit − ρg∆ϵgit−1. (16.71)

In the first-differenced model 16.74, the first-differenced observed lagged dependent vari-
able is correlated with the error term ∆εgit −∆ϵgit−1. If T = 3, we propose to use the
following moment conditions for identification of the parameters of interest:

E[xgit−1∆ϵgit−1] = 0 (16.72)

E[xgit−2∆εgit] = 0 (16.73)

Another option is to use the model in levels conditional in the initial observed values;
in this case, we have the following model:

y∗git −∆ϵgit = ρgy
∗
git−1 + x′gitβgit + θgygi0 + εgit + αgi − ρgϵgit−1. (16.74)

This model can be estimated using an FGLS-IV approach exploiting the instruments.
If T = 3, we can only use as instruments xgit−1 as an instrument for ygit−1 and xgi0 as
an instrument of ygi0.

17. MONTE CARLO EXPERIMENT: STRATIFIED SAMPLING

In this section, we present a Monte Carlo simulation experiment to test the proposed
estimators for the baseline model and the extensions of the baseline model under stratified
sampling.
For this purpose, we generate 100 datasets from five different data-generating processes

called DGP 1, DGP 2, DGP 3, and DGP 4. We use DGP 1 to test the proposed Mean
Cluster estimator under the assumption of clustered unobserved heterogeneity, DGP 2 to
test the Bayesian estimator, DGP 3 to test the Mean Cluster estimator in the presence
of time effects, and DGP 4 to test the Mean FGLS estimator proposed for a model with
inclusion of additive cluster-individual effects.
In the following subsections, we describe the different designs in more detail as well as

the results.

17.1. The design

17.1.1. DGP 1 In order to test the Mean Cluster estimator proposed for a model
with cluster unobserved heterogeneity and mixed coefficients (model 1.1), we conduct a
simulation experiment using a data-generating process that is similar to the DGP used
by Arellano and Bond (1991). We use a modification of the DGP proposed by Arellano
and Bond (1991) to illustrate that the first-differenced GMM estimator breaks down in
the presence of multiplicative unobserved cluster heterogeneity.
The main differences with the DGP of Arellano and Bond (1991) are: 1. inclusion

of cluster additive effects instead of individual-specific effects that are correlated with
the regressors, 2. inclusion of multiplicative cluster-individual-time specific effects, 3. the
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variance and variance-covariance are cluster-specific and they are generated from Gamma
and Wishart distributions.
More specifically, we generate 100 samples from the following model for individual i in
cluster g at period t:

ygit = α1,g + ρgygit−1 + x′gitβgit + εgit,

with ρg = ρ̄+ α2,g, ρ̄, βgit = β̄ + α3,g + λgit and β̄ =

(
1
1

)
.

The number of clusters is equal to 4, the number of individuals within cluster is equal to
100, and the number of time observations is equal to 3.
The cluster additive effects α1,g are generated from a normal distribution centered at 0
with heteroskedastic variance across clusters (σ2

α,1g ∈ {1.01, 1.01, 0.9, 0.9}).
The cluster effects (α2,g) added to the persistence parameter (ρ̄) are centered at 0, and
equal to α2,g ∈ {−0.5,−0.5, 0.5, 0.5}.
The cluster effects (α3,g) added to the mean coefficient vector (β̄) are centered at 0, and
equal to α3,g ∈ {−0.5,−0.5, 0.5, 0.5}.
The cluster-individual-time specific effects (λgit) added to the mean coefficient vec-
tor (β̄) are generated from a multivariate normal distribution centered at 0 with het-

eroskedastic variance-covariance matrix across clusters (∆λ,1 =

(
0.1 0.05
0.05 0.1

)
, ∆λ,2 =(

0.11 0.05
0.05 0.11

)
), ∆λ,3 =

(
0.12 0.05
0.05 0.12

)
), ∆λ,4 =

(
0.13 0.05
0.05 0.13

)
).

The disturbance term (εgit) is generated from a normal distribution centered at 0 with
a cluster heteroskedastic variance (σ2

εg ∈ {0.9, 0.9, 1.01, 1.01}).
The regressors xgit follow stationary autoregressive processes similar to the process

used by Arellano and Bond (1991). The key difference is that we allow for correlation
with the cluster effects:

xgit = α1,g + α3,g + ϕxgit−1 + ωgit,

with ϕ is equal to 0.8.
The disturbance term of the regressors (ωgit) equation is sampled from the normal dis-
tribution centered at 0 with variance that is cluster specific (σ2

ωg
∈ {0.9, 0.9, 1.01, 1.01}).

17.1.2. DGP 2 In order to test the estimator proposed in subsection 12.2.2, we conduct
a simulation experiment using a data-generating process similar to the DGP used by
Arellano and Bond (1991).
The main differences with the DGP of Arellano and Bond (1991) are: 1. inclusion of cor-

related cluster-individual effects instead of individual-specific effects, 2. inclusion of mul-
tiplicative cluster-individual-time specific effects, 3. the variance and variance-covariance
are cluster-specific and they are generated from Gamma and Wishart distributions.
More specifically, we generate 100 samples from the following model for individual i in
cluster g at period t:

ygit = α1,gi + ρgygit−1 + x′gitβgit + εgit,

with ρg = ρ̄+ α2,g, ρ̄, βgit = β̄ + α3,g + λgit and β̄ =

(
1
1

)
.
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The number of clusters is equal to 4, the number of individuals within cluster is equal to
100, and the number of time observations is equal to 3.
The cluster-individual additive effects α1,gi are generated from a normal distribution
centered at 0 with variance equal to 1.
The cluster effects (α2,g) added to the persistence parameter (ρ̄) are centered at 0, and
equal to α2,g ∈ {−0.025,−0.025, 0.025, 0.025}.
The cluster effects (α3,g) added to the mean coefficient vector (β̄) are centered at 0, and
equal to α3,g ∈ {−0.05,−0.05, 0.05, 0.05}.
The cluster-individual-time specific effects (λgit) added to the mean coefficient vector (β̄)
are generated from a multivariate normal distribution centered at 0 with with variance-

covariance matrix equal across clusters (∆λ,1 =

(
0.1 0.05
0.05 0.1

)
.

The disturbance term (εgit) is generated from a normal distribution centered at 0 with
a cluster heteroskedastic variance (σ2

εg ∈ {0.9, 0.9, 1.01, 1.01}).
The regressors xgit follow stationary autoregressive processes similar to the process

used by Arellano and Bond (1991). The key difference is that we allow for correlation
with the cluster effects:

xgit = α1,gi + α3,g + ϕxgit−1 + ωgit,

with ϕ is equal to 0.8.
The disturbance term of the regressors (ωgit) equation is sampled from the a normal
distribution centered at 0 with variance equal to 0.9.

17.1.3. DGP 3 In order to test the estimator proposed in Section 16, we conduct a
simulation experiment using a data generating processes that is similar to the DGP 3
described above. The only difference is that the observed dependent variable is given by:

yobsgit = ygit + ϵgit, (17.75)

where ϵgit represents the measurement error generated from a standard normal distri-
bution.

17.2. The Results

17.2.1. DGP 1 In Table 1, we present the bias and RMSE of the estimated mean
parameters of interest for different values of the persistence parameter. The estimates
are obtained for 100 simulations for a sample with 4 clusters, 100 individuals per group,
and a time dimension equal to 3.
The results show that the proposed Mean Cluster FGLS estimators have lower bias

and RMSE than the first-differenced GMM estimators.

17.2.2. DGP 2 In Table 2, we present the bias and RMSE of the estimated mean
parameters of interest for different values of the persistence parameter. The estimates
are obtained for 100 simulations for a sample with 4 clusters, 100 individuals per group
and a time dimension equal to 3. The results show that the proposed Mean Cluster FGLS
estimators have lower Bias and RMSE than the first-differenced GMM estimators and
the system GMM estimators.
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Table 1: DGP 1

Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE
ρ = 0.1 β1 = 1 β2 = 1

MC-OLS 0.0931 -0.0069 0.001 1.0055 0.0055 0.0057 1.0055 0.0055 0.0062
MC-OLSy0 0.0931 -0.0075 0.002 1.0066 0.0066 0.0056 1.0066 0.0066 0.0064
MC-FGLS 0.0908 -0.0092 0.0123 1.0314 0.0314 0.0782 1.0314 0.0314 0.0241
MC-FGLSy0 0.0988 -0.0012 0.0103 1.0073 0.0073 0.0246 1.0073 0.0073 0.9594
MC-JIFDGMM 0.5545 0.4545 82.4716 0.8048 -0.1952 15.9684 0.8048 -0.1952 8.6445
JIFDGMM 0.1727 0.0727 3.4936 0.9846 -0.1952 0.0729 0.9846 -0.1952 0.3024
MC-OIGMM 0.0995 -0.0005 0.008 1.0919 0.0919 0.822 1.0919 0.0919 0.8789
OIGMM 0.1139 0.0139 0.0116 1.2076 0.2076 1.6085 1.2076 0.2076 1.3103
MC-SYSGMM 0.0901 -0.0099 0.0034 1.0851 0.0851 0.0303 1.0851 0.0851 0.0328
SYSGMM 0.1135 0.0135 0.0047 1.0937 0.0937 0.0356 1.0937 0.0937 0.0426
FGLS-Hsiao -0.0999 -0.1999 0.0434 1.0156 0.0156 0.0149 1.0156 0.0156 0.017

ρ = 0.5 β1 = 1 β2 = 1
MC-OLS 0.4931 -0.0069 0.0005 1.0083 0.0083 0.0061 1.0083 0.0083 0.0064
MC-OLSy0 0.4931 -0.0101 0.0021 1.009 0.009 0.0059 1.009 0.009 0.0065
MC-FGLS 0.4941 -0.0059 0.0081 1.0197 0.0197 0.1547 1.0197 0.0197 0.1069
MC-FGLSy0 0.4947 -0.0053 0.0261 1.0028 0.0028 0.0649 1.0028 0.0028 0.0924
MC-JIFDGMM 1.4552 0.9552 144.1671 1.0147 0.0147 5.5668 1.0147 0.0147 5.7164
JIFDGMM 0.5373 0.0373 0.4727 0.9605 0.0147 0.0566 0.9605 0.0147 0.0507
MC-OIGMM 0.4861 -0.0139 0.0107 0.9989 -0.0011 0.7261 0.9989 -0.0011 0.841
OIGMM 0.4962 -0.0038 0.0193 1.0505 0.0505 1.4267 1.0505 0.0505 1.1413
MC-SYSGMM 0.4894 -0.0106 0.0025 1.0912 0.0912 0.0318 1.0912 0.0912 0.0359
SYSGMM 0.5257 0.0257 0.0043 1.0782 0.0782 0.0382 1.0782 0.0782 0.0438
FGLS-Hsiao 0.2641 -0.2359 0.0594 1.0283 0.0283 0.0156 1.0283 0.0283 0.0186

ρ = 0.9 β1 = 1 β2 = 1
MC-OLS 0.8974 -0.0026 0.0002 1.0053 0.0053 0.0061 1.0053 0.0053 0.0064
MC-OLSy0 0.8974 -0.0062 0.0013 1.0064 0.0064 0.006 1.0064 0.0064 0.0065
MC-FGLS 0.9036 0.0036 0.0043 1.0246 0.0246 0.2824 1.0246 0.0246 0.1272
MC-FGLSy0 0.9285 0.0285 0.0649 1.0095 0.0095 0.1402 1.0095 0.0095 0.0832
MC-JIFDGMM 0.9536 0.0536 0.1542 0.9805 -0.0195 0.0363 0.9805 -0.0195 0.1542
JIFDGMM 0.9122 0.0122 0.0031 0.9698 -0.0195 0.032 0.9698 -0.0195 0.0386
MC-OIGMM 0.8783 -0.0217 0.0075 1.0368 0.0368 1.1681 1.0368 0.0368 1.0338
OIGMM 0.8996 -0.0004 0.0052 1.2316 0.2316 1.5646 1.2316 0.2316 1.428
MC-SYSGMM 0.9015 0.0015 0.0005 1.0766 0.0766 0.0316 1.0766 0.0766 0.0331
SYSGMM 0.9256 0.0256 0.0014 1.0576 0.0576 0.0403 1.0576 0.0576 0.0407
Note: MC-OLS: Mean-Cluster OLS estimator, MC-FGLS: Mean-Cluster FGLS estimator,
MC-OLSy0: Mean-Cluster OLS estimator conditioning on initial value,
MC-FGLSy0: Mean-Cluster FGLS estimator conditioning on initial value,
MC-JIFDGMM: Mean-Cluster just-identified fist-differenced GMM estimator,
JIFDGMM: Just-identified fist-differenced GMM estimator,
MC-OIFDGMM: Mean-Cluster over-identified fist-differenced GMM estimator,
OIFDGMM: Over-identified fist-differenced GMM estimator, MC-SYSGMM: System GMM
estimator, SYSGMM: System GMM estimator.

17.2.3. DGP 3 In Table 3, we present the bias and RMSE of the estimated mean
parameters of interest for different values of the persistence parameter. The estimates
are obtained for 100 simulations for a sample with 4 clusters, 100 individuals per group
and a time dimension equal to 3. The results show that the proposed Mean Cluster
FGLS-IV estimator has lower bias and RMSE than the first-differenced estimators.

18. CONCLUSIONS

In this paper, we investigate the identification and estimation of dynamic heterogeneous
linear models in the presence of cluster heterogeneity when cluster structure is known
and panel data is unbalanced due to randomly missing data with a short or fixed time
dimension.
In order to exploit the structure of the data, this article proposes two approaches

depending on the growth of the number of clusters. When the number of clusters is
fixed, we observe all the clusters and the number of individuals grows to infinity, it
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Table 2: DGP 2

Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE
ρ = 0.1 β1 = 1 β2 = 1

MC-OLS 0.0935 -0.0065 0.0036 1.0055 0.0055 0.0172 1.0025 0.0025 0.0161
MC-FGLS 0.1030 0.0030 0.0036 1.0046 0.0046 0.0089 1.0046 0.0046 0.0093
MC-JIFDGMM 0.5649 0.4649 85.1471 1.4842 0.4842 14.9840 0.6957 -0.3043 8.0302
JIFDGMM -0.4678 -0.5678 21.8730 1.1253 0.1253 1.2624 1.0540 0.0540 0.7525
MC-OIFDGMM 0.5649 0.4649 85.1471 1.4842 0.4842 14.9840 0.6957 -0.3043 8.0302
OIFDGMM 0.0749 -0.0251 0.0168 0.9938 -0.0062 1.0178 0.9364 -0.0636 1.2441
MC-SYSGMM 0.0723 -0.0277 0.0074 1.1414 0.1414 0.0400 1.1130 0.1130 0.0407
SYSGMM 0.0949 -0.0051 0.0088 1.1264 0.1264 0.0429 1.0925 0.0925 0.0404

ρ = 0.5 β1 = 1 β2 = 1
MC-OLS 0.4921 -0.0079 0.0039 1.0191 0.0191 0.0171 1.0171 0.0171 0.0162
MC-FGLS 0.4966 -0.0034 0.0288 1.0761 0.0761 0.2015 1.0190 0.0190 0.0357
MC-FDGMM -0.1210 -0.6210 108.3416 1.1141 0.1141 0.5770 0.8036 -0.1964 1.8841
FDGMM 0.5566 0.0566 0.1178 0.9929 -0.0071 0.0319 0.9725 -0.0275 0.0373
MC-OIGMM -0.1210 -0.6210 108.3416 1.1141 0.1141 0.5770 0.8036 -0.1964 1.8841
OIGMM 0.4702 -0.0298 0.0217 1.1090 0.1090 0.8645 1.0439 0.0439 0.8128
MC-SYSGMM 0.4773 -0.0227 0.0056 1.1533 0.1533 0.0470 1.1282 0.1282 0.0526
SYSGMM 0.5159 0.0159 0.0062 1.1095 0.1095 0.0397 1.0724 0.0724 0.0503

ρ = 0.9 β1 = 1 β2 = 1
MC-OLS 0.8976 -0.0024 0.0019 1.0264 0.0264 0.0167 1.0247 0.0247 0.0161
MC-FGLS 0.8975 -0.0025 0.0009 1.0297 0.0297 0.0090 1.0233 0.0233 0.0082
MC-JIFDGMM 0.9020 0.0020 0.0033 0.9972 -0.0028 0.0319 0.9825 -0.0175 0.0337
JIFDGMM 0.9088 0.0088 0.0028 0.9883 -0.0117 0.0306 0.9736 -0.0264 0.0359
MC-OIGMM 0.9020 0.0020 0.0033 0.9972 -0.0028 0.0319 0.9825 -0.0175 0.0337
OIGMM 0.8809 -0.0191 0.0074 1.4201 0.4201 1.6271 1.3970 0.3970 1.7727
MC-SYSGMM 0.9012 0.0012 0.0010 1.1236 0.1236 0.0381 1.0906 0.0906 0.0422
Note: MC-OLS: Mean-Cluster OLS estimator conditioning on the initial value,
MC-FGLS: Mean-Cluster FGLS estimator conditioning on the initial value,,
MC-JIFDGMM: Mean-Cluster just-identified fist-differenced GMM estimator,
JIFDGMM: Just-identified fist-differenced GMM estimator,
MC-OIFDGMM: Mean-Cluster over-identified fist-differenced GMM estimator,
OIFDGMM: Over-identified fist-differenced GMM estimator, MC-SYSGMM: System GMM
estimator, SYSGMM: System GMM estimator.

Table 3: DGP 3

Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE
ρ = 0.1 β1 = 1 β2 = 1

MC-OLS 0.0908 -0.0092 0.0006 1.0093 0.0123 0.0027 1.0093 0.0123 0.0028
MC-FGLSIV 0.0914 -0.0086 0.0033 1.0051 0.0069 0.0039 1.0051 0.0069 0.0038
MC-FDGMM -0.0126 -0.1126 0.2135 1.015 0.015 0.0092 1.015 0.015 0.0114

ρ = 0.5 β1 = 1 β2 = 1
MC-OLS 0.443 -0.057 0.0038 1.0101 0.0128 0.0027 1.0101 0.0128 0.0029
MC-FGLSIV 0.4909 -0.0091 0.003 1.0074 0.0094 0.0043 1.0074 0.0094 0.0042
MC-FDGMM 0.5138 0.0138 0.0109 1.0185 0.0185 0.0069 1.0185 0.0185 0.0098

ρ = 0.9 β1 = 1 β2 = 1
MC-OLS 0.8647 -0.0353 0.0015 1.0373 0.0401 0.0043 1.0373 0.0401 0.0043
MC-FGLSIV 0.8938 -0.0062 0.0011 1.012 0.0144 0.0057 1.012 0.0144 0.0056
MC-FDGMM 0.9006 0.0006 0.0005 1.0188 0.0188 0.0076 1.0188 0.0188 0.0103
Note: MC-OLS: Mean-Cluster OLS estimator, MC-FGLSIV: Mean-Cluster FGLS-IV estimator,
MC-FDGMM: Mean-Cluster fist-differenced GMM estimator

is possible to estimate the mean slope coefficients and persistence parameter using a
Mean Cluster estimator that is an extension of the Mean Group estimator introduced by
Pesaran and Smith (1995). When the square root of the number of clusters is growing
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at a lower rate than the growth of the number of individuals within a cluster, the Mean
Cluster estimators estimate consistently the mean parameters.
As an extension of the baseline model, we consider a model with cluster-individual

additive effects. In this setting, we suggest a hierarchical Bayesian estimation with a
prior for the unknown initial conditions. In addition, we propose to condition on the
initial values in order to avoid making assumptions about the data-generating processes
of the initial conditions and the regressors.
A second extension is a model that allows for cross-sectional dependence by including

a common factor for the whole population and a cluster-specific common factor. In this
setting, the Mean Cluster OLS estimator using the time-demeaned regressors outperforms
pooled OLS.
We can conclude from the simulation experiment, that the Mean Cluster estimators

have lower Relative Bias and RMSE than the MG estimator and OLS estimator. This
shows that one can exploit the underlying clustering in the data to estimate the mean
coefficients and the cluster-specific parameters of heterogeneous linear dynamic panel
data models.
Finally, we show that the first-difference GMM estimator is inconsistent when there is

multiplicative cluster heterogeneity. In fact, the first-difference GMM estimator is equal
to the weighted average of the cluster-specific marginal effects. A similar conclusion can
be drawn if the marginal effects are individual-specific. In addition, we show that the
Mean Group estimator is equal to the Mean Cluster estimator when the time dimension
is long and the data is obtained by means of stratified sampling.

19. ANNEX

19.1. Proofs of theorems 6.1,6.2,6.3

19.1.1. Proof Theorem 6.1

Proof. The cluster-specific GLS estimator is given by:

θ̂g,GLS = (Z ′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g yg).

We can re-write it as follows:

θ̂g,GLS = θg + (Z ′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg),

with:

wg = diag(Xg)λg + ϵg.

Applying the plim operator and using Slutksy’s Theorem we obtain:

plim
Ng→∞
Tig fixed

θ̂g,GLS = θg + (
plim

Ng→∞
Tig fixed

1

ng
Z ′
gΩ

−1
g Zg)

−1(
plim

Ng→∞
Tig fixed

1

ng
Z ′
gΩ

−1
g wg),

Now,
plim

Ng→∞
Tig fixed

n−1
g Z ′

gΩ
−1
g Zg = Qg by Assumption 5.1, and

plim
Ng→∞
Tig fixed

1
ng
Z ′
gΩ

−1
g wg = 0 by

Assumptions 3.8 and 3.9. The last conclusion is obtained as follows:
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plim

Ng→∞
Tig fixed

1
ng
Z ′
gΩ

−1
g wg =

plim
Ng→∞
Tig fixed

∑
ig

∑
tig
zigtigωigtig

σigtig because Ω−1
g is a diagonal

matrix with σigtig in each element of the diagonal. Then,

plim
Ng→∞
Tig fixed

1

ng

∑
ig

∑
tig

zigtigωigtigσigtig =
1

Tig

∑
tig

Eg[zigtigωigtig
σigtig ],

where Eg[zigtigωigtig
σigtig ] represents the cross-sectional expectation. Now, under as-

sumptions 3.8 and 3.9 Eg[zigtigωigtig
σigtig ] = 0. Then, θ̂g,GLS − θg = op(1).

In order to derive the asymptotic distribution of the cluster-specific parameter, I use the
stabilizing factor equal to

√
ng such that:

√
ng(θ̂g,GLS − θg) = (

1

ng
Z ′
gΩ

−1
g Zg)

−1(
1

√
ng
Z ′
gΩ

−1
g wg).

By Linderberg-Levy Central Limit Theorem 1√
ng
Z ′
gΩ

−1
g wg → N(0, Qg).

Then,
√
ng(θ̂g,GLS − θg) d

→N(0, Q−1
g ).

19.1.2. Proof Theorem 6.2

Proof. As derived in section 4.1, the variance-covariance components stacked up in the
vector ηg are estimated by the penalized LS estimator as η̂g = (C ′

gCg + τI)−1(C ′
gR̂g)

with Cg a full rank matrix obtained following the procedure proposed there. Now, for
τ = 0:

η̂g = (C ′
gCg)

−1(C ′
gR̂g)

That is equal to:

η̂g = ηg + (C ′
gCg)

−1(C ′
gνgit)

Now, applying the plim operator and using Slutsky’s theorem:

plimη̂g = ηg + (plim
1

ng
C ′

gCg)
−1(plim

1

ng
C ′

gνg)

Now, plim 1
ng
C ′

gCg = Dg and plim
1
ng
C ′

gνg = 0 because νg is an error capturing estimation

error and it is orthogonal of Cg (Assumption 4.1). Thus, η̂g = ηg.
In order to derive the asymptotic distribution of the variance-covariance estimators, I
use the stabilizing factor

√
ng such that:

√
ng(η̂g − ηg) = (

1

ng

Ng∑
ig

Tig∑
tig

Cigtig
C ′

igtig
)−1(

1
√
ng

Ng∑
ig

Tig∑
tig

Cigtig
νigtig ).

Then, by Linderberg-Levy CLT we have that 1√
ng

∑Ng

ig

∑Tig

tig
Cigtig

νigtig → N(0, σ2
ν,gDg).

Thus,

√
ng(η̂g − ηg) d

→(0, σ2
νg
D−1

g ).
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Finally, Ωg = g(△λg , σ
2
εg ) and g(.) is a continuous function because it is a linear decom-

position. As a result, it is possible to use the Slutzky’s theorem to such that:
√
ng(Ω̂g − Ωg) d

→N(0, var(Ω̂g)).

19.1.3. Proof Theorem 6.3 7

Proof. We know that ˆ̄θ =
∑G

g π̂g θ̂g. Since π̂g = πg + op(1) by Assumption 3.3, we can
re-write the Mean Cluster estimator as follows:

ˆ̄θ =

m∑
g

πg θ̂g + op(1).

In addition, we have that:

ˆ̄θ =

m∑
g

πgθg +

m∑
g

πg(Z
′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg) + op(1).

Then,

ˆ̄θ −
m∑
g

πgθg =

m∑
g

πg(Z
′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg) + op(1).

ˆ̄θ − E[θg] =

m∑
g

πg(Z
′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg) + op(1).

Now, if we multiply by the stabilizing rate
√
N and knowing that:

√
N(ˆ̄θ − E[θg]) =

√
N

m∑
g

πg(Z
′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg) + op(1).

In addition, we know that Ng = Nπg such that
√
N =

√
Ng

πg
. Then,

√
N(ˆ̄θ − E[θg]) =

m∑
g

√
πg

√
Ng(Z

′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg) + op(1).

By Lindeberg-Levy CLT we have that 1√
Ng

(Z ′
gΩ

−1
g wg) d

→N(0, Qg) withQg = plimN−1
g (Z ′

gΩ
−1
g Zg).

Then,
√
Ng(Z

′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg) d

→N(0, Q−1
g ). Thus, we can conclude that:

√
N(ˆ̄θ − E[θg]) d

→N(0,

m∑
g

πgQg).

19.1.4. Proof Theorem 4

Proof. We known that the cluster-specific GLS estimators are equal to:

7I am thankful to Dr. Abhishek Ananth for the sketch of this proof.
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θ̂g,GLS = E[θg] + αg + (Z ′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg),

with:

wg = diag(Xg)λg + ϵg.

The presence of the lagged dependent variable in the left hand side of our model causes
a bias of order (ng)

−1 in θ̂g,GLS :

E(θ̂GLS,g − θg) = Kg,ng
+Op(n

−3/2
g ) = δg,ng

.

The derivation of the small-sample bias is presented in subsection 19.1.5.
Now, we can re-write the cluster specific estimator as:

θ̂g,GLS = E[θg] + αg + δg,ng
+ [(Z ′

gΩ
−1
g Zg)

−1(Z ′
gΩ

−1
g wg)− δg,ng

],

with the difference in squared brackets of order n−1
g because δg,ng

is Op(n
−1
g ).

Using the previous expression, we can write the Mean-Cluster estimator as :

1

m

∑
g

θ̂g,GLS = E[θg]+
∑
g

1

m
αg+

1

m

∑
g

δg,ng +
1

m

∑
g

[(Z ′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg)−δg,ng ].

From now on, we use a diagonal path asymptotic theory framework (Phillips and Moon
(1999), Levin et al. (2002)) represented by (m(ng), ng)diag → ∞.
Since δg,ng

= Op(n
−1
g ), [(Z ′

gΩ
−1
g Zg)

−1(Z ′
gΩ

−1
g wg) − δg,ng

] = Op(n
−1
g ) and the growth of

m requires the growth of ng because m is a monotonic increasing function of ng, we have:

plim
(m(ng),ng)diag→∞

1

m

∑
g

δg,ng =
plim

(m(ng),ng)diag→∞
1

m(ng)

∑
g

ng

ng
Op(n

−1
g ) =

plim
(m(ng),ng)diag→∞

1

m(ng)

∑
g

1

ng
Op(1) = 0,

Similarly,

plim
(m(ng),ng)diag→∞

1

m(ng)

∑
g

[(Z ′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg)− δg,ng

] = 0.

Now, using
√
m as the stabilizing factor, we obtain:

√
m(

1

m

∑
g

θ̂g,GLS−E[θg]) =
1√
m

∑
g

αg+
1√
m

∑
g

δg,ng+
1√
m

∑
g

[(Z ′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg)−δg,ng ].

We can re-write it as:

√
m(

1

m

∑
g

θ̂g,GLS − E[θg]) =
1√
m

∑
g

αg +

√
m

m

m∑
g

(Kg,ng
+Op(n

−3/2
g ))

+
1√
m

∑
g

[(Z ′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg)− δg,ng ].

(19.76)
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Then,

√
m(

1

m

∑
g

θ̂g,GLS − E[θg]) =
1√
m

∑
g

αg +

√
m

m

m∑
g

(Op(n
−1
g ) +Op(n

−3/2
g ))

+
1√
m

∑
g

[(Z ′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg)− δg,ng

].

(19.77)

√
m(

1

m

∑
g

θ̂g,GLS − E[θg]) =
1√
m

∑
g

αg +
1

m

m∑
g

√
m

ng
(Op(1) +Op(n

−1/2
g ))

+

√
m

m

∑
g

[(Z ′
gΩ

−1
g Zg)

−1(Z ′
gΩ

−1
g wg)− δg,ng

].

(19.78)

The last two terms converge to 0 by Assumption 9.4.
Sincem is a monotonic increasing function of ng and by Linderberg-Levy CLT, we obtain:

√
m(

1

m

∑
g

θ̂g,GLS − E[θg]) d
→N(0,∆α).

19.1.5. Small Sample Bias of θ̂g In order to derive the bias of θ̂g, I follow Kiviet and
Phillips (1993) and Grubb and Symons (1987) and express the dependent variable for
each individual as:

ygi = F̃gygi0 + C̃gXgiβg + C̃gX̃giλgi + εgi, (19.79)

where:

ygi =



ygi0
ygi1
ygi2
ygi3
...

ygiT−1


, F̃g =



1
ρg
ρ2g
ρ3g
...

ρT−1
g


,xgi =



xgi1
xgi2
xgi3
xgi4
...

xgiT


,C̃g =



0 0 0 .... 0
1 0 0 ... 0
ρg 1 0 ... 0

ρ2g ρg 1 ... 0

.....

ρT−1
g ρT−2

g 1 ... 0


,λgi =



λgi1
λgi2
λgi3
λgi4
...

λgiT


, εgi =



εgi1
εgi2
εgi3
εgi4
...

εgiT


.

If I stack up individual vectors in a group one, I obtain:

yg = Fgyg0 + Cgxgβg + CgX̃gλg + εg, (19.80)

with Fg = diag(F̃g), Cg = diag(C̃g), X̃g = diag(X̃gi).
Also, I know that the estimator per cluster is given by:

θ̂ = (Z ′
gΩ

−1Zg)
−1(Z ′

gΩ
−1y),

with Zg = [yg−1Xg].
Now, I can define:

E[Zg] = Z̄g + Cguge
′
1,

where Z̄g = [Fgygo CgXg].
Then, the bias of the estimator is given by:

E[θ̂g − θg] = E[(Z ′
gΩ

−1Zg)
−1(Z ′

gΩ
−1ug)],
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with Zg = [yg−1 Xg].
Following Kiviet and Phillips (1993), I find that:

E[θ̂g − θg] = −(Z̄ ′
gΩ

−1
g Z̄g)

−1[Z̄ ′
gΩ

−1
g CgZ̄g(Z̄

′
gΩ

−1
g Z̄g)

−1e1+

e1tr(C
′
gΩ

−1
g Z̄g(Z̄

′
gΩ

−1
g Z̄g)

−1Z̄gΩg) + 2e1tr(C
′
gΩ

−1
g CgΩg)].

(19.81)

This can be rewritten as:

E[θ̂g − θg] = Kg,ng
+ op(n

−1
g ) = Op(n

−1
g ).
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