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Abstract

This paper studies different identification strategies for triangular simultaneous semiparametric
equation models without exclusion restrictions. We start our study with an identification strategy based
on a functional form assumption. In this setting, we derive an orthogonal score function and we provide
a two-step estimator procedure using neural networks for the estimation of the nuisance parameter.
Later, we relax the functional form assumption and impose restrictions on the unobservables to obtain
additional moment conditions. The restrictions rely on asymmetrically distributed or heteroskedastic
error terms. For estimation, we propose two-step semiparametric estimators. In the first step, we use
neural networks for estimation of the nuisance parameters and in the second step we estimate the causal
parameter of interest.

Keywords: Endogeneity, Artificial Neural Network, Identification, Control Function, Orthogonal score
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1 Introduction
Identification of models with endogenous variables usually relies on exclusion restrictions. When in-
struments are available, identification and estimation of the parameters of interest can be done using an
instrumental variable approach or a control function approach. Conversely, in the absence of exclusion
restrictions or available instrumental variables, one needs to adopt different identification strategies for the
parameters of interest.

This paper proposes alternative identification strategies when no instrumental variables are available
for triangular semiparametric models. We begin our study with a baseline triangular model composed
of a linear structural equation and a nonlinear reduced form equation of the endogenous regressor. In
this setting, we identify the parameters of interest of the main equation by exploiting a functional form
assumption in combination with a control function approach. Later, we relax the linearity assumption
in the main equation and we assume that it presents a partial linear form. For the identification of the
parameters of interest in this more general model, we use two different approaches. The first one is an
extension of the methodology proposed by Lewbel et al. (2020) for linear triangular models that requires
that the distributions of the error terms are asymmetric. The second one extends the strategy proposed by
Klein and Vella (2010) for linear triangular models and entails that the error terms are heteroskedastic.
For estimation, we propose two-step semiparametric estimation methods using neural networks in the
first stage to estimate the nuisance parameters. But other machine learning methods can be used for the
estimation of the nuisance parameters in combination with cross-fitting as suggested by Chernozhukov
et al. (2018).

More specifically, in the baseline model we use a control function approach that exploits the nonlinear-
ity of the reduced form equation. This means we augment the main equation with estimated residuals that
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present independent variation from the included regressors. These residuals present independent variation
because of the nonlinear relationship between the endogenous regressor and the exogenous variables. This
situation could be plausible for linear structural equations with endogenous explanatory variables that are
related to the included exogenous regressors. For instance, we are interested in studying the causal effect
of school quality on the achievement of students and we do not have any instrumental variable. In this
case, it is possible to assume a linear relationship between achievement, school quality, and socioeconomic
characteristics such as household wealth and parents’ educational attainment. However, we can assume
that school quality has a nonlinear relationship with these socioeconomic characteristics. Then, we can add
the predicted residuals of the reduced equation of school quality as a control function in the achievement
equation. Let us note that the assumption that school quality has a nonlinear relationship with household
wealth and parental education is plausible.

The described estimation procedure seems straightforward, but simple plugging in of the estimated
residuals in the main equation only produces a good estimate of the marginal causal effect if the chosen
neural network architecture is the correct one. In order to produce an estimator that retrieves consistent
estimates irrespective of the neural network architecture, we follow Chernozhukov et al. (2018) by deriving
an appropriate orthogonal score. This orthogonal score produces a

√
N-consistent estimate, with N

representing the sample size, because it is not sensitive to the neural network architecture used for the
estimation of the nuisance parameter. We call this estimator the Control Function-Orthogonal Score
(CF-OS) estimator.

While identification and estimation of the parameters of the main equation exploiting an assumption
of nonlinear reduced form equation in combination with an appropriate orthogonal score retrieve good
estimates, a violation of the assumption of linearity in the structural equation invalidates the consistency of
the proposed estimator. In order to deal with this problem, we relax the assumption of linearity in the main
equation and assume that the structural equation has a partial linear form. In this new setting, we need
to impose restrictions on the errors for identification. For this purpose, we extend Lewbel2020WP and
Klein and Vella (2010) identification strategies to a semiparametric triangular model without exclusion
restrictions.

In the first case, we follow Lewbel2020WP and assume that the error terms in the triangular model
are asymmetrically distributed and exploit the moment conditions derived by Lewbel et al. (2020).
The assumption that the errors are non-symmetrically distributed is plausible in several situations of
interest. For instance, it might be more appropriate to assume that achievement is nonlinearly related to
the socioeconomic variables and that its error term has an asymmetric probability density distribution.
Similarly, it is possible that the distribution of the error term in the equation for the quality of school (the
endogenous variable) is not symmetric. For estimation, we propose a two-step semiparametric estimator.
In the first step, we estimate the conditional expectation of the dependent variable on the exogenous
regressor, and the conditional expectation of the endogenous variable on the exogenous regressors. Then,
we subtract these estimated conditional expectations from the independent variable and the endogenous
variable respectively to construct residuals that are used in the second stage of the estimation. With these
residuals, we estimate the parameter of interest using the moment conditions proposed by Lewbel et al.
(2020). Therefore, the estimator proposed is a two-step semiparametric estimator with nuisance parameters
estimated in the first step using neural networks.

In the second case, we assume that the error terms of both equations of the semiparametric triangular
model are heteroskedastic instead of assuming that they are asymmetric. This is an extension of the
identification strategy proposed by Klein and Vella (2010). The assumption of heteroskedastic error terms
is plausible in settings where the dependent variable and endogenous regressor present dispersion as a
function of the exogenous regressors. For instance, it is possible that the dispersion of achievement of
students increases with wealth. In addition, the error in the equation for the quality of school could be
heteroskedastic. In this setting, the proposed estimator is a two-step estimator. The first step is the same as
the one for the estimator proposed using asymmetric error terms. In the second step, we need to estimate
the coefficients by optimizing a loss function that considers the heteroskedasticity of the structural error
term.

The simulation results show that the proposed methods have lower RMSE and bias than OLS. The
estimator CF-OS outperforms all other methods when the data-generating process is a triangular model
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with a linear structural equation and a non-linear reduced equation. When the model is semiparametric
with asymmetric error terms, the two-step semiparametric estimator using the moment conditions proposed
by Lewbel et al. (2020) is the most appropriate. Finally, the simulation results for the estimator that
exploits heteroskedasticity of the error terms show that the estimator produces better estimates than OLS
when the model is semiparametric with heteroskedastic error terms.

This paper is related to different strands of literature: identification of triangular linear models without
exclusion restrictions, control function approach, and orthogonal scores.

On one hand, the identification of triangular linear models without exclusion restrictions has been
investigated by several authors. One can find identification strategies through heteroskedasticity that have
been proposed by Klein and Vella (2010), Lewbel (2012), and Rigobon (2003). In addition, there is identi-
fication through restrictions on the distribution of the errors such as Lewbel et al. (2020). Identification
through nonlinearity is not advised by Angrist and Pischke (2008) and Wooldridge (2010) if the predicted
values of the endogenous variable are directly used in the main equation. In this paper, we contribute to the
literature by providing identification through nonlinearity with an estimator that is robust to the estimation
of the nonlinear reduced-form equation. On the other hand, the identification of triangular semiparametric
models without exclusion restrictions has not been studied. This paper contributes to the literature by
providing identification strategies that rely on restrictions on the unobservables.

According to Wooldridge (2015), the control function (CF) approach for a linear triangular model
consists of two stages: in the first stage, the endogenous regressor is regressed on exogenous variables
aiming to obtain the residuals and in the second stage, the estimated residuals are included in the structural
equation to control for endogeneity. In order to identify all parameters of the augmented structural equation,
it is necessary that the estimated residuals have independent variation from the included regressors in
the main equation. In other words, the reduced equation must present excluded regressors. Wooldridge
(2015) explains that when the reduced-form equation is nonlinear, the CF approach is more efficient than
two stage least squares estimation method (2SLS) but it is nonrobust to misspecification of the nonlinear
function. This paper contributes to the literature by making robust the CF approach to the misspecification
of the nonlinear function. For this purpose, we derive an orthogonal score that allows us to estimate the
parameter of interest without contamination from the estimation of the nonlinear reduced-form equation
using neural networks. As mentioned, this robust CF approach is called CF-OS. In addition, the CF-OS
method can be used when there are available instrumental variables, and when there is no endogeneity
after a minor modification.

Chernozhukov et al. (2018) defines an orthogonal score as the one that presents a vanishing Gateaux
derivative with respect to the nuisance parameters when evaluated at the true finite-dimensional parameter
values. The orthogonal score is closely related to Robinson (1988). This Chapter contributes to the
literature by providing an orthogonal score that makes the CF approach robust to the estimation of the
reduced-form equation.

In Section 2, we present the baseline model. In Section 3 we describe the identification strategy. In
Section 4 we describe the naive control function approach. In Section 5 we propose an orthogonal control
function approach. In Section 6 we compare the proposed orthogonal control function estimator with
2SLS estimation. In Section 7 we relax the assumption of linearity of the main equation, we provide two
identification strategies and their corresponding estimators. In Section 8 we present specification tests. In
Section 9 we discuss the usefulness of the additional moment conditions. In Section 10 we present the
simulation experiment and its results, and in Section 11 we present the conclusions of the paper.

Notation: We denote random variables with bold lowercase letters (x1), a realization of a random
variable is denoted with light lowercase letters and indexed by i (xi1). Vectors are denoted by light
lowercase letters (x1) and matrices by light uppercase letters (Z).

2 Theoretical setup
Assumption 1 {yi,xi1,xi2}N

i=1 are identical and independent copies of (y,x1,x2)∈Y × [−M,M]× [−1,1]
with x2 a continuously distributed random variable with compact support [−1,1] and finite fourth moments,
and x1 a continuously distributed random variable with compact support X1 ⊂ [−M,M] M > 0 and finite
fourth moments.
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The assumption that x1 and x2 are scalar regressors is without loss of generality because the methods
presented in this paper are easily generalized to settings with non-scalar regressors.

Assumption 2 The structural equation has a linear form with and additive unobserved error term

y = x1β1o +x2β2o + ε. (1)

The unobserved random term ε has finite fourth moments. The unobserved parameter of interest β1o is a
scalar structural parameter. Note that the parametric assumption of linearity is relaxed in Section 7.

Assumption 3 The error term ε is mean independent of x2

E[ε|x2] = E[ε] = 0. (2)

Assumption 3 implies that the structural disturbance term ε is uncorrelated with x2 and any function of x2.
Thus, the variable x2 is exogenous. This assumption is stronger than no correlation of ε with x2.

Assumption 4 The conditional expectation of the regressor x1 on x2 has an unknown nonlinear functional
form

E[x1|x2] = go(x2) ̸= E[x1]. (3)

Assumption 4 states that x1 is mean dependent on x2, thus by definition x1 can be decomposed into two
parts: the conditional expectation of x1 on x2 (E[x1|x2]) and an error u that has zero mean conditional on
x2 (E[u|x2] = 0).

x1 = go(x2)+u. (4)

In addition, Assumption 4 implies that u has independent variation from x2 and that u is uncorrelated with
any function of x2. Therefore, u is a reduced-form disturbance.
Assumption 4 can be modified to include instrumental variables if they are available. Thus, the method
CF-OS, proposed in section 5, can be also used with instrumental variables.
Decomposing x1 into a conditional expectation and an additive disturbance term makes sense under the
assumption that x1 is continuous (Assumption 1). The first stage of the CF-OS method, presented in
Section 5, holds under Assumptions 1 and 4. But Assumption 4 needs to be modified when x1 is a
non-continuous endogenous explanatory variable. In this case, a more appropriate assumption is:

x1 = g̃o(x2,u).

In this situation, the first stage of the CF-OS method presented in Section 5 is not appropriate anymore
because we are facing a nonseparable reduced-form equation. A possible solution could be retrieving u by
following a procedure described by Matzkin (2016). She explains that if g̃o is strictly increasing on u, x2
and u are independent, the cumulative density distribution of u is strictly increasing (Fu), and normalizing
Fu = u, we can show that g̃o(x2,u) = F−1

x1|x2=x2
(u). Then, u can be obtained by u = Fx1|x2=x2(x1) with

Fx1|x2=x2 equal to the conditional quantile function. This is left for further research.

Assumption 5 The structural error term ε is mean dependent on the reduced-form error term u

E[ε|u] ̸= E[ε] = 0. (5)

Assumption 5 means that ε can be decomposed into two components: one that is mean dependent of u and
an error term ω that has zero mean conditional on u as follows:

ε = E[ε|u]+ω.

Assumption 5 is not necessary for consistency of the estimation method CF-OS proposed in Section 5.
Therefore, the CF-OS method presented in Section 5 can be used when the variable of interest is affected
by observables (selection on observables) after a minor modification. The CF-OS has to be modified
because there is no need to add the control function uρo +ω . The reason is that ε∗ is orthogonal to u
when there is no endogeneity. More specifically, the orthogonal score is valid after replacing y∗∗ by y∗

(See Section 5 for definitions of ε∗, y∗∗ and y∗).
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Figure 1: DAG

Assumption 6
E[ε|u] = ρou. (6)

Assumption 6 states that the conditional expectation of ε on u has a linear functional form with ρo an
unobserved parameter.
As consequence of Assumptions 4, 5, and 6, the structural error term ε is correlated with x1. The reason is
that E[x1ε] = E[(go(x2)+u)ε] by Assumption 4, and the last expression is equal to E[(go(x2)+u)(ρou+
ω)] = ρoE[u2] by Assumptions 5 and 6.
The error term ω has zero mean conditional on x1 and x2 (E[ω|x1,x2] = 0) because E[ω|x1,x2] =
E[ω|x2,u] = E[ω|u] = 0 where the first equality holds because x1 is a one-to-one function of u conditional
on x2 (Wooldridge (2010)), the second equality holds by Assumption 3, and the last equality holds by
Assumption 5.

The setup presents a structural equation that has a linear functional form with the outcome variable y
explained by the endogenous variable x1 and the exogenous regressor x2. The endogenous regressor (x1)
is mean dependent on the exogeneous regressor (x2.) The linear specification of the structural equation is
commonly used in empirical studies and we relax it in Section 7. The model does not present external
instrumental variables for x1, but this assumption is not needed for consistency of the estimation method
CF-OS presented in 5. In fact, the estimation method CF-OS presented in 5 can be also used in settings
where: 1) the regressor x1 is exogenous but affected by observables (selection on observables) or 2)
there are available instrumental variables for the endogenous regressor x1. We illustrate the assumptions
presented using a Directed Acyclic Graph (Fig. 1).

In addition, as mentioned the assumption that x1 and x2 are scalar regressors is without loss of
generality because the methods presented in this paper are easily generalized to settings with non-scalar
regressors. Finally, the assumption that the regressor x1 is a bounded variable is not more limiting than the
assumption that x1 = go(x2)+u with go a bounded function (Farrell et al. (2021)).

3 Identification
The identification of the parameter of interest β1o relies on the linearity assumption of the structural
equation (Assumption 2), the nonlinearity of the reduced form equation (Assumption 4), and the mean
independence of the structural error term ε with the exogenous regressor x2 (Assumption 3). As a
consequence of these assumptions, u presents independent variation from x2 and x1. Therefore, u can be
used as a control function that renders x1 exogenous. Additionally, u is identifiable because has zero mean
conditional on x2 (Assumption 3).
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Using the mentioned assumptions, it is tempting to rewrite the structural equation as follows:

y = go(x2)β1o +x2β2o +uβ1o + ε. (7)

In this equation, one can believe that estimation is straightforward (if we are convinced of the non-linearity
assumption) because the new error term uβ1o + ε in 7 is conditionally independent of go(x2) and x2.
Moreover, one can think that the best estimation procedure is to estimate go(x2) in the first stage and in
the second stage plug it in (7) and perform simple OLS. This is not possible because the regularization
bias of the first stage estimator of go(x2) contaminates the estimation of β1o and β2o (Chernozhukov et al.
(2018), Robinson (1988)) and produces estimates that are not

√
N-consistent.

In order to deal with this problem, we can use a control function approach and augment the structural
equation by controlling for the unobservable u as follows:

y = x1β1o +x2β2o +ρou+ω. (8)

In model 8, we can guarantee linear independence of x1, x2 and u thanks to the nonlinearity assumption of
the reduced form equation. In addition, we can set up the following moment conditions:

m1(Z;θo,go(x2)) = E[φ(Z;θo,go(x2))] = E[ωZ] = 0, (9)

where φ(Z;θo,go(x2)) is a vector of score functions equal to ωZ, θo = [β1o β2o ρo]
′, ω = y−x1β1o −

x2β2o −ρou, 0 = [0 0 0]′, and Z = [x1 x2 u]′.
These moment conditions can be seen as the first-order conditions of the minimization of the following

loss function:
Qo(Z;θ ,go(x2)) = E[(y−x1β1 −x2β2 −uρ)2].

This interpretation is important for consistency of the estimator proposed in Section 4 because it permits to
specify the necessary primitive condition that Qo(Z;θ ,go(x2)) has a unique global optimizer θo (Newey
and McFadden (1994)).

Now, we might believe that it is possible to estimate the parameters of interest using the naive control
function approach. But in Section 4, we show that estimation using the score φ(Z;θo,go(x2)) is not
optimal because it is sensible to the first stage estimation of go(x2). In order to solve this problem, in
Section 5 we derive an orthogonal score that retrieves

√
N-consistent estimation of the parameter of

interest.

4 Naive Control Function Approach
As described in the previous section, we can write the structural equation (Assumption 2) for observation i
as:

yi = xi1β1o + xi2β2o +ρoui +ωi. (10)

It is clear that if ui is observed, we can identify and estimate the three parameters β1o , β2o , ρo because xi1,
xi2 and ui are independent of the error term ωi. Thus, we could retrieve the parameters using the moment
conditions 9. But since ui is not observed, we propose a two-step estimation procedure described in the
following subsection.

4.1 Estimation
First Step:
In the first step, we estimate ui using the residuals ûi = xi1 − ĝo(xi2) obtained from a first stage estimation
of go(xi2). For this purpose, we propose to learn go(xi2) using a machine learning technique. In particular,
a suitable method is a feed-forward multilayer perceptron RELU architecture. We use this specific machine
learning method because its theoretical properties permit us to derive the asymptotic properties of our
second step estimator of β1o .
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Second Step:
In the second step, the estimator of θo is the solution of the following sample moment conditions:

1
N

N

∑
i

φ(Ẑi;θo, ĝo(xi2))) = 0, (11)

where Ẑi = [xi1 xi2 ûi]
′, and ûi are the residuals obtained in the first stage.

This is equivalent to estimate θo by performing ordinary least squares regression of yi on xi1, xi2 and ûi
or by minimization of the following quadratic loss function :

θ̂ = argmin
θ

Qn(Ẑ;θ , ĝo(x2)),

with Qn(Ẑ;θ , ĝo(x2)) =
1
N ∑

N
i (yi − xi1β1 − xi2β2 − ûiρ)

2, x2 a N ×1 vector collecting all observations of
xi2, and Ẑ a N ×3 matrix collecting all observations of xi1, xi2, and ûi.

4.2 Statistical properties
Before evaluating the statistical properties of the estimator derived from the naive control function
approach, we need to add the following assumption to guarantee the consistent estimation of go(x2).

Assumption 7 go(x2) lies in a δ -Hölder ball W δ ,∞([−1,1])

go(x2) ∈W δ ,∞([−1,1]) := {go(x2) : max
α,|α|<δ ,

ess sup
x2∈[−1,1]|Dα go(x2)|≤ 1}

Assumption 7 is equivalent to Assumption 2 of Farrell et al. (2021) and states that go(x2) is a uniform
continuous function with smoothness parameter δ ∈ N+ and Dα go(x2) its weak derivative with δ > 1.
This assumption states that we consider a broad class of functions that are smooth.

4.2.1 1. Consistency of the first step estimator ĝo(xi2)

Lemma 1 Non-asymptotic high probability bound for ĝo(xi2)
If i) assumptions 1, 4, and 7 hold, ii) ĝo(xi2) is a deep Multilayer Perceptron RELU (MLP-RELU) network
estimator restricted to the MLP architecture class (FMLP) for a loss function l(g(x2);x1,x2)

1 that is
Lipschitz in g(x2), l(g(x2);x1,x2) and obeys a curvature condition around g(x2), such that for constants
c1,c2,Cl bounded away from zero:

|l(g(x2);x1,x2)− l(g′(x2);x1,x2)|≤Cl |g(x2)−g′(x2)|,

c1E(g(x2)−go(x2))
2 ≤ E[l(g(x2);x1,x2]−E[l(go(x2);x1,x2]≤ c2E[g(x2)−go(x2)]

2,

iii) ĝo(x2) has width W ≍ n
d

2(δ+d) log2n and depth L ≍ logn, then:

E[(ĝo(x2)−go(x2))
2]⩽C{N− δ

δ+d log8N +
loglogN

N
},

where C > 0 is a constant, δ ∈ N+ is a smoothness parameter of the Hölder ball, d = 1 when we only
have one exogenous variable.

The proof of this lemma follows from Theorem 1 presented by Farrell et al. (2021).

1If xi1 is continuous, the loss function is the l −2 norm or quadratic loss.
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4.2.2 2. Consistency of the second step estimator θ̂o

Theorem 1 If i) conditions of Lemma 1 are satisfied such that ĝo(xi2)−go(xi2) = op(1), ii) (a) E(|xi1|2)<
∞, E(|xi2|2)< ∞, E(|ûi|2)< ∞, ii) (b) plimN−1

∑
N
i ẐiẐ′

i = QZZ is positive definite, then:

θ̂o −θo = op(1).

Condition i) states that the first step estimator is consistent. Condition ii.a) states that the expected absolute
value of the elements of ẐiẐ′

i are finite. Condition ii.b) states that ui has independent variation from xi2
which is implied by assumptions 2, 3, and 4. This is equivalent to a full rank condition for Zi. The proof of
this Theorem is presented in the supplemental material.

4.2.3 3. Rate of convergence of θ̂o is slower than 1/
√

N

Proposition 1 If i) conditions of Lemma 1 are satisfied such that ĝo(xi2)−go(xi2)= op(1), ii) plimN−1
∑

N
i ẐiẐ′

i =

QZZ is positive definite and bounded, iii) (ĝo(xi2)−go(xi2))ui = op(N−1/2), then:

|
√

N(θ̂o −θo)| p
→∞.

This proposition states that the estimator presents a rate of convergence that is slower than 1/
√

N even if
the first step estimator is consistent, ui has independent variation from xi2 as it is implied by assumptions 2,
3, and 4, and if the estimation error of go(xi2) multiplied by the unobserved random variable ui converges
to 0 at the rate N−1/2. The reason is that the estimation error of learning go(xi2) is multiplied by xi1, and
xi2 which are non-centered at 0.

The proof of this Proposition is presented in the supplemental material.

5 Control Function Approach-Orthogonal Score (CF-OS)
The main problem of the estimation presented in the previous section is that the score functions φ(Z;θo,go(x2))
are not Neyman-orthogonal to go(x2) (For a detailed definition of Neyman-orthogonal scores see Cher-
nozhukov et al. (2018)). Using an orthogonal score is necessary to obtain

√
N-consistent estimates of

the finite-dimensional parameters in the presence of high-dimensional nuisance parameters (Robinson
(1988)).

In order to determine whether the score functions φ(Z;θo,go(x2)) have the Neyman orthogonal
property, we need to check two conditions:

1. E[φ(Z;θo,go(x2))] = 0.

2. The Gateaux derivative operator of the score φ(Z;θo,go(x2)) in the direction g(x2)−go(x2) van-
ishes.

Condition 1 is satisfied as explained in section 3. In order to check the second condition, we derive the
Gateaux derivative of φ(Z;θo,go(x2)) in the direction g(x2)−go(x2):

∂r=0E[φ(Z;θo,go(x2))] = E[(g(x2)−go(x2))Z̃] ̸= 0,

with Z̃ = [x1 x2 0]′.
Then, the Gateaux derivative of φ(Z;θo,go(x2)) in the direction g(x2)−go(x2) does not vanish. As a

result, the method presented in subsection 4.1 is sensible to biases (overfitting or regularization) in the
estimation of the nuisance parameter go(x2). As a solution, we derive the Neyman orthogonal score using
the following methodology.
First, we write the structural equation, after replacing the control function, in matrix form as follows:

y = β1ox1 +β2o x2 +ρou+ω. (12)

Then, we concentrate out the parameter β2o by premultiplying equation 8 by the annihilator matrix
Mx2 = IN − x2(x′2x2)

−1x′2:
Mx2y = Mx2x1β1o +ρoMx2u+Mx2ω, (13)
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Renaming the transformed variables of the model 13 yields the following triangular system:

y∗ = x∗1β1o +ρou∗+ω
∗, (14)

x1 = go(x2)+u, (15)

with E(ω∗′u) = 0, go(x2) and ρo considered as nuisance parameters 2.
Now, we follow Chernozhukov et al. (2018) and obtain the orthogonalised score function:

ψ(Wi;β1o ,go(xi2)) = (y∗∗i − x∗i1β1o)(xi1 −go(xi2)). (16)

The orthogonal score 16 can be re-written as:

ψ(Wi;β1o ,go(xi2)) = (y∗∗i − x∗i1β1o)ui, (17)

where Wi = [y∗∗i x∗i1 ui]
′, y∗∗i is a typical element of y∗−ρou∗, and x∗i1 is a typical element of x∗1 = Mx2x1.

We derive β1o , using the orthogonal score 17, as:

β1o = E[uix∗i1]
−1E[uiy∗∗i ]. (18)

Now, we are left to check if the new score function ψ(Wi;β1o ,go(xi2)) has the Neyman orthogonal
property. As before, we check two conditions:

1. E[ψ(Wi;β1o ,go(xi2))] = 0.

2. The expectation of the Gateaux derivative operator of the orthogonal score ψ(Wi;β1o ,go(xi2)) in the
direction g(x2)−go(x2) vanishes.

Condition 1 is clearly satisfied. In order to check the second condition, we derive the Gateaux derivative
of ψ(Wi;β1o ,go(xi2)) in the direction g(xi2)−go(xi2) and express it in matrix form as follows:

∂r=0E[ψ(W ;β1o ,go(x2))] =−E[(ρMx2(g(x2)−go(x2)))
′(x1 −go(x2))

− (Mx2y−Mx2x1β1o −Mx2uρo)
′(g(x2)−go(x2))] = 0.

(19)

The latter result is obtained using the law of iterated expectations. The expectation of the first term is equal
to E[E[(ρMx2(g(x2)− go(x2)))

′(x1 − go(x2))|x2]] = E[(ρMx2(g(x2)− go(x2))
′(E[x1|x2]− go(x2)))] = 0.

A similar procedure applies to the second term.
The orthogonality of the score function 17 with respect to the high-dimensional nuisance parameter

go(x2) allows to obtain a
√

N-consistent estimator of the parameter of interest ( Chernozhukov et al.
(2018), Robinson (1988)).

An estimator of 18 is unfeasible because ui and ρo are unknown. Thus, we present a feasible estimation
procedure in the following subsection.

5.1 Estimation
In order to make the estimation feasible, we need a two-step procedure.

First Step:
In the first step, we estimate ui using the residuals ûi = xi1 − ĝo(xi2) obtained from a first stage estimation
of equation go(xi2). For this purpose, we propose to learn go(xi2) using a machine learning technique.
In particular, a suitable method is a feed-forward multilayer perceptron RELU architecture. We use this
specific machine learning method because its theoretical properties permit us to derive the asymptotic
properties of our second step estimator of β1o .

2The other nuisance parameters β2o has been removed by applying the Frisch-Waugh-Lovell theorem.
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Second step
In the second step, we need to estimate parameters ρo and β1o . For this purpose, we use the residuals ûi
obtained in the first stage and replace them in the following sample moment conditions:

1
N

m(Ĥ;ρ̂o, ĝo(x2))) = 0, (20)

1
N

ψ(Ŵ;β̂1o , ĝo(x2))) = 0, (21)

where m(Ĥ; ρ̂o, ĝo(x2))) = (Mx∗1
y∗− ρ̂oMx∗1

û∗)′Mx∗1
û∗ and ψ(Ŵ;β̂1o , ĝo(x2))) = û′(ŷ∗∗− x∗1β̂1o).

The estimators are the solutions to 20 and 21:

ρ̂o = (û∗′Mx∗1
û∗)−1(û∗′Mx∗1

y∗), (22)

β̂1o = (û′x∗1)
−1(û′ŷ∗∗). (23)

5.2 Statistical Properties
5.2.1 Consistency of the second step estimator ρ̂o

Theorem 2 If i) conditions of Lemma 1 are satisfied such that ĝo(x2)−go(x2)= op(1), ii) plimN−1û∗′Mx∗1
û∗

is bounded away from 0 and finite, then:

ρ̂o −ρo = op(1).

Condition i) states that the first step estimator ĝo is consistent. Condition ii) states that û∗ is not orthogonal
to x∗1 = Mx2x1 which is satisfied by assumption 4.

The proof of this Theorem is presented in the supplemental material.

5.2.2 Consistency of the second step estimator β̂1o

Theorem 3 If i) conditions of Lemma 1 are satisfied such that ĝo(x2)−go(x2) = op(1), ii) plimN−1û′x∗1
is bounded away from 0 and finite, then:

β̂1o −β1o = op(1).

Condition i) states that the first step estimator is consistent. Condition ii) states that û∗ is not orthogonal to
x∗1 = Mx2x1 which is satisfied by assumption 4.

The proof of this Theorem is presented in the supplemental material.

5.2.3 Asymptotic distribution of the estimator β̂1,o

Proposition 2 If i) conditions of Lemma 1 are satisfied such that ĝo(x2)−go(x2) = op(1), ii) plimN−1û′x∗1
is finite and bounded away from 0 and finite, iii) (ĝo(x2)− go(x2))

′Mx2ω = op(N−1/2), iv) (ĝo(x2)−
go(x2))

′Mx2ξ = op(N−1/2) then:
√

N(β̂1o −β1o)
L
→N(0,D−1V D−1),

with D = plimN−1û′x∗1, and V = plimN−1E[ω2]u′Mx2u.

Condition i) states that the first step estimator is consistent. Condition ii) states that u∗ is not orthogonal
to Mx2x1 which is implied by assumption 4. Conditions iii) and iv) state that the inner products of the
estimation error of go(x2) and the transformed unobserved random terms Mx2u and Mx2ω converge in
probability to 0 at the rate N−1/2. The latter is possible because the complexity of the parameter space of
go(x2) is bounded as shown by Farrell et al. (2021).

The proof of this Proposition is presented in the supplemental material.
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6 Comparison of CF-OS with 2SLS
Estimation of the model presented in Section 2 using 2SLS, with go(x2) and x2 as instrumental variables,
is not possible. The reason is that 2SLS method relies on a score function that is not orthogonal to
go(x2). To see this clearer, we need to verify if the Gateaux derivative of the score function E[εd] = 0
with d = [go(x2) x2]

′ vanishes. For this purpose, we derive the Gateaux derivative of the score function
E[εd] = 0 in the direction of g(x2)−go(x2) and obtain:

∂r=0E[εgo(x2)] = E[(g(x2)−go(x2))go(x2)] ̸= 0,

∂r=0E[εx2] = E[(g(x2)−go(x2)x2] ̸= 0.

Thus, we can conclude that the 2SLS estimator (using as instrumental variables go(x2) and x2) is nonrobust
because it is sensitive to overfitting and regularization bias of learning go(x2). Importantly, this conclusion
does not change if there are available instrumental variables. Thus, the CF-OS is the most efficient
estimation procedure and it is robust to overfitting and regularization bias in estimating the nonlinear
reduced form (with or without available instrumental variables).

There are two options to avoid contamination of the 2SLS estimator due to biases in the learning of the
unknown function go(x2) (that can include or not available instrumental variables): 1) assume a parametric
functional form of the reduced-form equation or 2) use polynomials of x2 (and available instrumental
variables) as instrumental variables.

If we opt to assume a parametric functional form for the reduced-form equation, we can use nonlinear
fitted values as instruments in the 2SLS procedure (Angrist and Pischke (2008)). 2SLS estimation is less
efficient than CF estimation if the parametric functional form is correct (Wooldridge (2015)). Then, if the
parametric form of the reduced form equation is correct, CF is preferred. But if the parametric functional
form is incorrect, CF estimation is nonrobust (Wooldridge (2015)). On the contrary, the CF-OS does not
need a parametric assumption of the reduced-form equation and it is the most efficient estimator.

Another option is using the 2SLS method with polynomials of x2 or/and possible instrumental variables.
It is not clear if 2SLS, using polynomials of x2 as IVs, is better or worse than CF-OS. A study of the
difference between 2SLS, using polynomials of x2 as IVs, and the CF-OS method is left for further
research.

We are aware that Wooldridge (2010) does not necessarily advocate identification through nonlinearity
of the reduced form. Hence, we would like to point out that our method proposed in Section 5 as well as
the following ones, are still consistent and valid when there are available instrumental variables and the
additional moment conditions can be used to test the validity of the instruments (See Section 9).

7 Relaxing the linear assumption
In this Section, we relax Assumption 2 by allowing a nonlinear functional form in the structural equation.
We ease Assumption 2 in order to avoid spurious results when the true DGP is not the one presented in
section 2.

Assumption 8 The structural equation has a partial linear form with an additive unobserved error term.

y = x1β1o + fo(x2)+ ε. (24)

7.1 Identification and estimation through asymmetric error terms
7.1.1 A. Identification

Under the Assumptions 1 to 6, and with Assumption 8 replacing Assumption 2, β1o is not identifiable. The
reason is that there are no available exclusion restrictions and the nonlinear functional form assumption
does not allow to generate a reduced-form error with independent variation of fo(x2). Then, we need to
impose further restrictions on the unobservables of the model (ε and u) in order to achieve identification
of β1o . For this purpose, in this Subsection, we add an assumption for ε and replace Assumption 6. More
specifically, the new assumptions for the disturbance terms of the model are:
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Assumption 9 The disturbance term of the endogenous regressor u is partitioned into two terms.

u = u1 +u2.

Assumption 10 The structural disturbance term presents a linear relationship with one of the components
of the disturbance term of the endogenous regressor.

ε = γou1 + ς .

Assumptions 9 and 10 imply that u2 is an unobserved exclusion restriction.

Assumption 11 Sign restriction on γo.
γo > 0

This assumption is needed to guarantee the identification of the parameter of interest. It means that
the researcher needs to know the direction of the correlation between the endogenous regressor and the
unobserved structural error.

Assumption 12 The errors u1, u2, ς have zero mean and are mutually independent.

Assumption 13 u2 has a finite variance and u1,ς have finite fourth moments.

Finally, we add an assumption for the joint distribution of the observed regressors.

Assumption 14 The joint distribution of the dependent variable and regressors is fully observed.

Assumptions 9 to 14 are equivalent to the ones presented by Lewbel et al. (2020).
The assumptions presented imply the following moment conditions:

E[vu− γoσ
2
u1
−β1o(σ

2
u1
+σ

2
u2
)] = 0, (25)

E[u2 −σ
2
u1
−σ

2
u2
] = 0, (26)

E[(v−β1ou)2 − γ
2
o σ

2
u1
−σ

2
ω ] = 0, (27)

E[(v−β1ou)(v− (β1o + γo)u)u] = 0, (28)

E[(v−β1ou)(v− (β1o + γo)u)(u2 −σ
2
u1
−σ

2
u2
)−2γoσ

2
u1
(v−β1ou)u] = 0. (29)

The moment conditions 25 to 29 are an extension of the moments provided by Lewbel2020WP to a
setting suitable for a triangular semiparametric model with no instrumental variables. In our case, we use
v = y−E[y|x2] and u = x1 −E[x1|x2] following Robinson (1988).

7.1.2 B. Estimation

The estimation procedure has two steps:

Step 1: Following Robinson (1988), we obtain the residuals v̂i = yi − Ê[yi|xi2] and ûi = xi1 − ̂E[xi1|xi2] by
learning the conditional expectations using a feed-forward neural network.

Step 2: We use the residuals obtained in Step 1 and the moment conditions provided by Lewbel et al.
(2020) to estimate the parameters of interest.
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7.1.3 C. Statistical properties

In this Subsection, we call the estimator of E[y|x2] as ĥo(x2). Additionally, we collect moments 25 to
29 in a vector called a(Z̃,ζo,τo) where Z̃ = [u v]′, ζo = [β1o γo σ2

u1
σ2

u2
σ2

ω ]
′, τo = [go fo]

′. In
addition, we need to add the following assumptions to guarantee the consistent estimation of fo(x2) and
E[y|x2].

Assumption 15 fo lies in a δ2-Hölder ball W δ2,∞([−1,1]) .

fo(x2) ∈W δ2,∞([−1,1]) := { fo : max
α2,|α2|<δ2,

ess sup
x2∈[−1,1]|Dα2 fo(x2)|≤ 1}.

Assumption 16 E[y|x2] lies in a δ3-Hölder ball W δ3,∞([−1,1]).

E[y|x2] ∈W δ3,∞([−1,1]) := {E[y|x2] : max
α3,|α3|<δ3,

ess sup
x2∈[−1,1]|Dα3 E[y|x2]|≤ 1}.

Assumptions 15 and 16 are in line with Farrell et al. (2021) and state that fo(x2) and E[y|x2] are uniform
smooth continuous functions. Their smoothness parameters are δ2 > 1 and δ3 > 1 respectively. Dα2 go(x2)
and Dα3go(x2) are their weak derivatives.

1. Consistency of ĥo(x2).

Lemma 2 Non-asymptotic high probability bound for ĥo(x2)
If i) assumptions 1, 3, 8 to 16 hold, ii) ĥo(x2) is a deep Multilayer Perceptron RELU (MLP-RELU)
network estimator restricted to the Multilayer Perceptron architecture class (FMLP) for a loss function
l(h(x2);y,x2) that is Lipschitz in h(x2), l(h(x2);y,x2) and obeys a curvature condition around h(x2), such
that for constants c3,c4,C5 bounded away from zero:

|l(h(x2);y,x2)− l(h′(x2);y,x2)|≤C5|h(x2)−h′(x2)|,

c3E(h(x2)−ho(x2))
2 ≤ E(l(h(x2);y,x2)−E(l(ho(x2);y,x2)≤ c4E(h(x2)−ho(x2))

2,

iii) ĥo(x2) has width W ≍ n
d

2(δ3+d) log2n and depth L ≍ logn, then:

E[(ĥo(x2)−ho(x2))
2]⩽C6{N

− δ3
δ3+d log8N +

loglogN
N

},

where C6 > 0 is a constant, δ3 ∈ N+ is a smoothness parameter of the Hölder ball, d = 1 when we only
have one exogenous variable.

The proof of this lemma follows from Theorem 1 of Farrell et al. (2021).

2. Consistency of the second step estimator ζ̂o.

Proposition 3 if i) E[a(Z̃,ζo,τo)] = 0, ii) ζo ∈ Θζ a compact space, iii) a(Z̃,ζo,τo) stochastic equicon-
tinuous, iv) E[supζ ||a(Z̃,ζ ,τ)||]< ∞, then

ζ̂o
p
→ζo.

Condition i) is the identification condition and it is satisfied by Lewbel et al. (2020), condition ii) is the
boundedness condition on the parameter set and it is substantive, condition iii) and iv) can be shown
following Newey and McFadden (1994).
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3. Asymptotic distribution of the second step estimator ζ̂o.

Proposition 4 If i) ζ̂o
p
→ζo, ii) ĝo(x2)−go(x2) = op(1), ĥo(x2)−ho(x2) = op(1), iii) ▽ζ a(Z̃,ζo,τo) satis-

fies conditions of lemma 4.3 of Newey and McFadden (1994), iv) E[▽θ a(Z̃,ζo,τo)] = A is non singular,
then

√
N(ζ̂o −ζo)→ N(0,A−1V2A−1),

where V2 = E(a(Z̃,ζo,τo)a(Z̃,ζo,τo)
′).

This proposition is based on Theorem 8.2 of Newey and McFadden (1994), and its proof is provided by the
authors.

7.2 Identification and estimation through heteroskedasticity
In the previous Subsection, we presented an identification strategy that relies on the higher moments
obtained from the moment-generating function of the unobserved errors. The main assumptions are that
errors must not be symmetric nor normally distributed. These assumptions might be restrictive for certain
empirical applications.

In order to relax these assumptions, we extend the approach proposed by Klein and Vella (2010) for
linear triangular systems with no exclusion restrictions that exploits heteroskedasticity in the error terms.
In our case, we assume that the DGP is a semiparametric triangular model with heteroskedastic disturbance
terms.

In particular, we replace the assumptions 9 to 14 by the following ones:

Assumption 17
ε = α1(x2)ε

∗,

where α1(x2) is a smooth function of the regressor x2, E[ε∗|x2] = 0, and E[ε∗2|x2] = 1.

Assumption 17 states that the structural error term is heteroskedastic. The error term ε∗ has zero mean
conditional on the regressor x2, and it is homoskedastic.

Assumption 18
u = α2(x2)u∗,

where α2(x2) is a smooth function of the regressor x2, E[u∗|x2] = 0, and E[u∗2|x2] = 1.

Assumption 18 states that the reduced-form equation has an error term that is heteroskedastic. The error
term u∗ is zero mean conditional on the regressor x2, and it is homoskedastic.

Assumption 19 ε∗ = ρou∗+υ∗

Assumption 19 states that the homoskedastic error term ε∗ in the main equation can be decomposed in
two parts: one that is correlated to the homoskedastic error term in the reduced-form equation and a
second elements υ∗ that is orthogonal to u∗. As a consequence of this assumption, the regressor x1 is
endogenous. The reason is that E[εx1] = E[(α1(x2)ε

∗)(go(x2)+α2(x2)u∗)] by Assumptions 4, 17, and
18, and E[(α1(x2)ε

∗)(go(x2)+α2(x2)u∗)] = α1(x2)α2(x2)ρo by Asumption 17, 18, and 19.

7.2.1 A. Identification

In order to identify the parameter of interest β1o , we follow Robinson (1988) by substracting the conditional
expectation on x2 from the dependent variable (y−E[y|x2]) and we obtain:

η = β1ou+ ε, (30)

where η = y−E[y|x2] and u = x1 −E[x1|x2].
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In equation 30, we cannot identify the parameter of interest β1o because the error term is mean
dependent on u and there are no available exclusion restrictions. While identification of β1o seems
unattainable, one can exploit the heteroskedasticity assumptions. First, we can notice that E[ε|u] =
E[α1(x2)ε

∗|α2(x2)u∗] by Assumptions 17 and 18. Now, we can re-write the last expression as E[ε|u] =
E[ρoα1(x2)u∗+α1(x2)ν

∗|α2(x2)u∗] by Assumption 19. Thus, E[ε|u] = ρoα1(x2)u∗. Finally, knowing
that u = α2(x2)u∗ leads to E[ε|u] = ρo

α1(x2)
α2(x2)

u. The last expression allows us to rewrite the transformed
model as follows:

η = β1ou+ρo
Sε

Su
u+ν

∗∗, (31)

where Sε = α1(x2) =
√

E[ε2|x2], Su = α2(x2) =
√

E[u2|x2], and ν∗∗ = α1(x2)ν
∗.

Therefore, the identification of the parameter of interest is transformed into a problem that demands
the identification of Sε , Su and ρo.

Now, identification of Su is guaranteed by identification of go(x2) since it is possible to obtain
u = x1 −go(x2) and E[u2|x2] = S2

u.
The trickiest part is the identification of Sε since it depends on the unknown parameter β1o . Following

Klein and Vella (2010), we propose to solve the following minimization problem:

argmin
β1o ,ρo ∑

i
(ηi −β1oui −ρo

√
E[(ηi −β1oui)2|xi2]

ui

Sui
)2. (32)

7.2.2 B. Estimation

The minimization problem 32 is unfeasible because of the presence of the unknown terms
√

E[ε2|x2]

and
√

E[u2|x2]. In order to make it feasible, we need to estimate
√

E[ε2|x2] and
√

E[u2|x2]. Since
their nonparametric estimation is computing demanding, we follow Farré et al. (2013) and propose a
simplification based on two additional assumptions:

Assumption 20
E[u2|x2] = exp(x2κ1)

2.

Assumption 21
E[ε2|x2] = exp(x2κ2)

2.

Now, we are ready to set up the estimation procedure:
Step 1:
Following Robinson (1988), we obtain estimations of ui = xi1 −E[xi1|xi2] and ηi = yi −E[yi|xi2] by learn-
ing the conditional expectations using a feed-forward neural network.

Step 2:
Estimation of heteroskedastic variance (S2

u) of u using the following non-linear least squares procedure:

κ̂1 := argmin
κ1 ∑

i
(û2

i − exp(xi2κ1)
2)2.

Then using κ̂1 generate Ŝui = exp(xi2κ̂1).

Step 3a:
Plug in the estimated residuals ûi, obtained in step 1, and Ŝui, obtained in step 2, in the minimization
problem 32. Thus, we obtain the feasible objective function:

β̂1o , ρ̂o, κ̂2 := argmin
β1o ,ρo,κ2 ∑

i
(η̂i −β1o ûi −ρoexp(xi2κ2)

ûi

Ŝui
)2. (33)

Another possibility for estimation is replacing step 3a with the procedure called step 3b:
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Step 3b:
1. Initialize the parameter β

(0)
1o

and obtain first estimates of ε̂
(0)
i = η̂i − ûiβ

(0)
1o

.

2. Use ε̂
(0)2

i to estimate Sε
(0)
i

2.
3. Minimize 33 using Sε

(0)
i in place of exp(xi2κ2).

4. Obtain an estimate β
(1)
1o

and iterate until convergence.

8 Specification tests
The identification strategies presented in this paper rely on assumptions and restrictions on the structural
equation and the reduced-form equation. Unfortunately, testing the assumptions on the structural equation
is not possible in any of the models proposed. The reason is that we cannot identify the structural equation
without the assumptions proposed when there are no instrumental variables. If there are instrumental
variables, it is possible to test the assumptions on the structural equation. But in this case, it is a question
of testing the validity of the available instruments.

More specifically, testing the assumption of linearity in the structural equation is not possible since
its identification relies on this assumption. Because of this is the reason, Wooldridge (2010) does not
advocate the use of functions of x2 for identification of the parameters of interest. But, the CF-OS
method proposed in Section 5 is still consistent and useful for 1) models with endogenous explanatory
variables that are nonlinear on available instrumental variables or 2) models without endogeneity and
with regressors that present a nonlinear function with observables (Selection on observables). Similarly,
testing the assumptions of the asymmetric error term in the structural equation or heteroskedastic error
term in the structural equation is not possible when there are not available instrumental variables because
its identification relies on one of these assumptions.

On the other hand, it is possible to test the different assumptions made for the reduced-form equa-
tion. We can find available tests for the hypothesis that the reduced-form equation is linear against
a nonparametric specification (Horowitz (2006)). In addition, it is possible to test the assumption of
heteroskedastic reduced-form error using the test proposed by Eubank and Thomas (1993) or Dette
and Munk (1998). Eubank and Thomas (1993) presents a test for the heteroskedasticity of the error
terms using a penalized spline estimator (There are no available heteroskedasticity tests using Neural
Networks as estimators). Finally, a test for the hypothesis of symmetrically distributed error term against
non-symmetrically distributed error term is proposed by Neumeyer and Dette (2007).

Combining strategies
Since it is challenging to test the different assumptions proposed, another option is combining the

identification strategies and average estimates. If we believe that a semi-parametric structural model
presents not only asymmetric error terms but also heteroskedastic error terms, it is possible to estimate the
model using both strategies and then average the estimated parameters (The asymptotic distribution of
this averaged estimator is left for further research). Further, it is not advisable to average the estimates
obtained using a semiparametric structural model and a linear structural model. The reason is that both
assumptions are incompatible when there are no available instrumental variables. In contrast, this could
be done in the presence of instrumental variables. Another option could be combining the identification
strategy of nonlinearity in the reduced form with heteroskedasticity and/or asymmetric error terms for a
linear triangular system.

9 Test of valid instrumental variables
In the case of an available instrumental variable (we call it i), the methods proposed are still consistent. In
this situation, we could use the additional moment conditions provided in this paper to test the validity of
the available instrumental variables.
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9.1 Triangular model with linear structural equation
In the case of the triangular model presented in section 2 (linear structural equation and a nonlinear reduced
equation), the availability of an instrumental variable (i) provides the following moment conditions:

E[εB] = 0, (34)

with B = [i x2]
′.

We could estimate the parameters of the structural equation 2 using the moment condition E[εB] = 0
and call this estimator θ̂

(1)
o . Also, we can estimate the parameters of the structural equation 2 using

only the moment conditions presented in Section 5 and call this estimator θ̂
(2)
o . Then, we can compare

both estimators using a Hausman-type test procedure (Hausman (1983),Hahn and Ridder (2019)). The
properties of this testing procedure are left for further research.

9.2 Triangular model with semiparametric equation
In the case of the triangular model presented in section 7 (semiparametric structural equation and a
nonlinear reduced equation), the availability of an instrumental variable (i) provides the following moment
conditions:

E[ωu] = 0. (35)

We could estimate the parameter β1o using the moment condition E[ωu] = 0 and call it β̂
(1)
1o

. We
can also estimate β1o using the moments presented in Subsection 7.1 or using the method proposed
in Subsection 7.2 and call it β̂

(2)
1o

. Then, we can compare both estimators using a Hausman-type test
procedure (Hausman (1983),Hahn and Ridder (2019)). The properties of this testing procedure are left for
further research.

10 Monte Carlo simulation

10.1 The design
In order to test the different estimation methods proposed, we performed three Monte Carlo simulation
experiments with different data-generating processes in each simulation experiment. In the following
subsections, we present the design and results of the Monte Carlo simulations. More details are presented
in the supplementary material.

10.1.1 A. Linear structural equation and non-linear secondary equation

In the first Monte Carlo simulation experiment, we generate data from 9 different data-generating processes.
DGP 1 - 4: The first 4 data generating processes are based on a triangular simultaneous model

with a linear structural equation and a non-linear reduced-form equation (DGP 36). Both equations
present additive disturbance terms. The structural equation presents one endogenous regressor x1 and one
exogenous covariate x2. We generate 100 samples using this data-generating process (DGP) with different
values of the parameters (Details in Table 1).

yi = β1xi1 +β2xi2 + εi,

xi1 = g(xi2)+ui,
(36)

with: xi2
ui
εi

∼ N

(0
0
0

 ,

var(x2) 0 0
0 var(u) covu,ε
0 covu,ε var(ε)

). (37)
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The DGPs 1 to 3 are modifications of the DGPs used by Su and Ullah (2008) and Martins-Filho and Yao
(2012). The main difference with respect to their DGPs is the linearity in the structural equation. We use
different functional forms proposed by Su and Ullah (2008) and Martins-Filho and Yao (2012) for the
unknown function for g(x2) in the reduced form or secondary equation (We cannot compare our results to
theirs because they consider a semi-parametric triangular system with exclusion restrictions). Finally, we
use a logarithmic function for the DGP 4.

DGP 5 - 6: The fifth and sixth data-generating processes are generated from a linear triangular model
with limited explanatory variables. The DGP 5 uses a censored endogenous variable:

xi1 = (xi2 +ui)1(xi2 +ui > 0).

The DGP 6 uses a binary endogenous variable (DGP 6):

xi1 = 1(xi2 +ui > 0).

10.1.2 B. Semiparametric structural equation and non-linear secondary equation: nonsymmetric
errors

In order to test the estimation method proposed in subsection 7.1, we generated data from a DGP similar
to the one proposed by Lewbel et al. (2020) but modifying the structural equation using a semi-parametric
model:

yi = β1xi1 + f (xi2)+ εi,

xi1 = g(xi2)+ui,
(40)

with ui = ui1+ui2, ui1 ∼ Gumbel(0,1.64), ui2 ∼ logNormal(0,1.72), εi = ui2+ri, ri ∼ Gumbel(0,1.64),
f (xi2) = log(|xi2 −1|+1)sign(xi2 −1), and g(xi2) = log(|xi2 −1|+1)sign(xi2 −1).
This data-generating process is called DGP 7.

10.1.3 C. Semiparametric structural equation and non-linear secondary equation: heteroskedastic
errors

In order to test the estimation methods proposed in subsection 7.2, we generated data from a DGP similar
to the one proposed by Klein and Vella (2010) but modifying the triangular system as follows:

yi = β1xi1 + f (xi2)+0.33exp(0.6xi2)v∗i + zi,

xi1 = g(xi2)+ exp(0.2xi2)v∗i ,
(41)

with v∗i ∼N(0,1), zi ∼N(0,1), f (xi2)= log(|xi2−1|+1)sign(xi2−1), and g(xi2)= log(|xi2−1|+1)sign(xi2−
1).
This data-generating process is called DGP 8.

10.2 The results
In this section, we present the results of the simulation experiment. In figures 2, 3, and 4 we present the
boxplots of the estimated parameter of interest β1 of the DGPs 1, 7, and 8 when the true value of β1 is
equal to 1. The estimation methods used are OLS ignoring endogeneity (OLS), 2SLS using as IVs ĝ(xi2)
(2SLS), OLS p.: OLS using ĝ(xi2) instead of xi1 (OLS Orth. Vble.), naive Control function approach
(CF), naive Control function approach with sample splitting (CF SS), control function approach with
orthogonal score (CF-OS), control function approach with orthogonal score with sample splitting (CF-OS
SS), estimation with asymmetric errors (AE), and estimation with heteroskedastic errors (HE).
When the underlying data-generating process is a simultaneous triangular model with a linear main
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Table 1: Monte Carlo Experiment: Identification through nonlinearity

Scenario y = f (x1,x2) g(θx2) β1 dim(x2) β2 var(u) var(x2) var(ε) cov(u,eps)

1.1 y = x1β1 + x2β2 log(|x2 −1|+1)sign(x2 −1) 1 1 1 1 1 1 0.9
1.2 y = x1β1 + x2β2 log(|x2 −1|+1)sign(x2 −1) 1 1 1 1 2 1 0.9
1.3 y = x1β1 + x2β2 log(|x2 −1|+1)sign(x2 −1) 1 1 1 2 1 1 0.9
1.4 y = x1β1 + x2β2 log(|x2 −1|+1)sign(x2 −1) 1 1 1 1 1 2 0.9
2.1 y = x1β1 + x2β2

exp(x2)
1+3∗exp(x2)

1 1 1 1 1 1 0.9

2.2 y = x1β1 + x2β2
exp(x2)

1+3∗exp(x2)
1 1 1 1 2 1 0.9

2.3 y = x1β1 + x2β2
exp(x2)

1+3∗exp(x2)
1 1 1 2 1 1 0.9

2.4 y = x1β1 + x2β2
exp(x2)

1+3∗exp(x2)
1 1 1 1 1 2 0.9

3.1 y = x1β1 + x2β2 1+ 2∗exp(x2)
1+exp(x2)

1 1 1 1 1 1 0.9

3.2 y = x1β1 + x2β2 1+ 2∗exp(x2)
1+exp(x2)

1 1 1 1 2 1 0.9

3.3 y = x1β1 + x2β2 1+ 2∗exp(x2)
1+exp(x2)

1 1 1 2 1 1 0.9

3.4 y = x1β1 + x2β2 1+ 2∗exp(x2)
1+exp(x2)

1 1 1 1 1 2 0.9
4.1 y = x1β1 + x2β2 log(0.1+ x2

2) 1 1 1 1 1 1 0.9
4.2 y = x1β1 + x2β2 log(0.1+ x2

2) 1 1 1 1 2 1 0.9
4.3 y = x1β1 + x2β2 log(0.1+ x2

2) 1 1 1 2 1 1 0.9
4.4 y = x1β1 + x2β2 log(0.1+ x2

2) 1 1 1 1 1 2 0.9
5.1 y = x1β1 + x2β2 censored endogenous regressor 1 1 1 1 1 1 0.9
5.2 y = x1β1 + x2β2 censored endogenous regressor 1 1 1 1 2 1 0.9
5.3 y = x1β1 + x2β2 censored endogenous regressor 1 1 1 2 1 1 0.9
5.4 y = x1β1 + x2β2 censored endogenous regressor 1 1 1 1 1 2 0.9
6.1 y = x1β1 + x2β2 binary regressor 1 1 1 1 1 1 0.9
6.2 y = x1β1 + x2β2 binary regressor 1 1 1 1 2 1 0.9
6.3 y = x1β1 + x2β2 binary regressor 1 1 1 2 1 1 0.9
6.4 y = x1β1 + x2β2 binary regressor 1 1 1 1 1 2 0.9

equation and nonlinear reduced-form equation (DGP 1 to DGP 6), the best method is the proposed CF-OS
estimator. When the data generating process is a simultaneous semiparametric triangular model with
asymmetric error terms, the best estimator is the two-step semiparametric estimator (AE) that exploits the
moment conditions proposed by Lewbel et al. (2020) (DGP 7, Figure 3). When the data-generating process
is a simultaneous semiparametric triangular model with heteroskedastic error terms, the best estimator is
the two-step semiparametric estimator (HE) that requires the optimization of a nonlinear objective function
(DGP 8, Figure 4). In tables 4 to 10 of Appendix B, we present the detailed results of bias and root mean
squared error of the different estimation methods for the parameter of interest β1 for all DGP.

For the estimation of the nuisance parameters, we used deep neural networks with 2 different architec-
tures for the prediction of the endogenous regressor. The neural network architectures are presented in
Table 2. In both architectures, we use a dropout rate 3 equal to 0. Additionally, the optimization algorithm
used is RMSprop with an adaptive learning rate that starts at 0.01 using a minibatch equal to 128 and the
number of epochs is equal to 10 (Hinton et al. (2012)). In both architectures, we used two hidden layers
with rectified linear units (RELU). The activation function RELU is a stepwise function given by max(0,z)
that was first proposed by Nair and Hinton (2010). Finally, we use linear activation function for the output
layer of the second architecture and RELU for the first architecture.

It is important to notice that using RELU in the output layer misspecifies the endogenous variable
with support in an interval of values that includes 0. In spite of this misspecification, we observe that the
estimation results using this neural network architecture still leads to good estimates using the orthogonal
scores. On the contrary, using a RELU activation function in the output layer performs better for censored
or truncated endogenous variables (DGP ). When the DGP includes a binary endogenous variable, the
activation function of the output layer is the sigmoid function. Importantly, estimation of the reduced form
of a binary or truncated variable using neural networks with only x2 as a regressor means that we ignore
the non-separability of the function. In spite of this, CF-OS is the best estimator for triangular models
with truncated or binary regressors.

3Dropout is a regularization technique used in neural network training with the purpose of avoiding overfitting. According to
Srivastava et al. (2014), a neural network that overfits the data predicts perfectly the training sample but not the evaluation set. This
means the training error is low while the validation error is high.
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Table 2: Neural Network Architectures

NNa Hidden Layers Nodes Activation function Activation function Dropout Rate Optimization Algorithm Learning Rate
for hidden layers for output layer

1 2 10 max(0,z) max(0,z) 0 RMsprop 0.01
2 2 10 max(0,z) z′w 0 RMsprop 0.01
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(a) NN with RELU final activation function
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(b) NN with linear final activation function

Figure 2: Linear structural equation and non-linear reduced-form equation: DGP 1-Scenario 1
Note: The true parameter value is 1 (β1 = 1).
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Figure 3: Linear structural equation and non-linear reduced-form equation: DGP 7-Scenario 1
Note: The true parameter value is 1 (β1 = 1).
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Figure 4: Linear structural equation and non-linear reduced-form equation: DGP 8-Scenario 1
Note: The true parameter value is 1 (β1 = 1).

11 Conclusions
This paper proposes alternative identification strategies when no instrumental variables are available for
triangular semiparametric models. We begin our study with a baseline triangular model composed of
a linear structural equation and a reduced-form equation of the endogenous regressor that is nonlinear.
In this setting, we identify the parameters of interest of the main equation by exploiting a functional
assumption in combination with a control function approach. Later, we relax the linearity assumption
in the main equation and we assume that it presents a partial linear form. For the identification of the
parameters of interest in this more general model, we use two different approaches. The first one is an
extension of the methodology proposed by Lewbel et al. (2020) for linear triangular models that requires
that the distributions of the error terms are asymmetric. The second one extends the strategy proposed by
Klein and Vella (2010) for linear triangular models and entails that the error terms are heteroskedastic.
For estimation, we propose two-step semiparametric estimation methods using neural networks in the
first stage to estimate the nuisance parameters. But other machine learning methods can be used for the
estimation of the nuisance parameters in combination with cross-fitting as suggested by Chernozhukov
et al. (2018). The simulation results show that the proposed methods have lower RMSE and bias than OLS.
The estimator CF-OS outperforms all other methods when the data-generating process is a triangular model
with a linear structural equation and a non-linear reduced equation. When the model is semiparametric
with asymmetric error terms, the two-step semiparametric estimator (AE) using the moment conditions
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proposed by Lewbel et al. (2020) is the most appropriate (Section 7.1). Finally, the simulation results for
the two-step estimator (HE) that exploits heteroskedasticity of the error terms show that the estimator
produces better estimates than OLS (Section 7.2).

12 Annex

12.1 Proofs
12.1.1 Proof of Theorem 1

The estimator θ̂o is given by:

θ̂o = (
N

∑
i=1

ẐiẐ′
i)
−1(

N

∑
i=1

Ẑiyi). (42)

We know that yi is equal to Ziθo +ωi. Adding and subtracting Ẑ′
iθo gives Ẑ′

iθo +(Zi − Ẑi)
′θo +ωi. Thus,

yi = Ẑ′
iθo + ω̂i with ω̂i = (Zi − Ẑi)

′θo +ωi. Replacing the last expression in 42 and re-arranging gives:

θ̂o −θo = (
N

∑
i=1

ẐiẐ′
i)
−1(

N

∑
i=1

Ẑi(Zi − Ẑi)
′
θo +

N

∑
i=1

Ẑiωi). (43)

First, we expand the term within the inverse in expression 43:

N

∑
i=1

ẐiẐ′
i =

N

∑
i=1

ZiZ′
i +

N

∑
i=1

Zi(Ẑi −Zi)
′+

N

∑
i=1

(Ẑi −Zi)
′Zi +

N

∑
i=1

(Ẑi −Zi)(Ẑi −Zi)
′.

And calling Ẑi −Zi as ξ̃i gives:

N

∑
i=1

ẐiẐ′
i =

N

∑
i=1

ZiZ′
i +

N

∑
i=1

Ziξ̃
′
i +

N

∑
i=1

ξ̃
′
i Zi +

N

∑
i=1

ξ̃iξ̃
′
i . (44)

In expression 44, we can name the four terms in the RHS as 44.i), 44.ii), 44.iii), 44.iv). Now, we can
analyze each one of these terms as follows:
44.i) ∑

N
i=1 ZiZ′

i = Op(N) because {ZiZ′
i}N

i=1 is an i.i.d. sequence by Assumption 1. The elements of ZiZ′
i

have finite expected absolute values by condition ii.a of Theorem 1 and by Theorem 3.1 of White (1984)
∑

N
i=1 N−1ZiZ′

i
a.s.
→ QZZ . By Theorem 1 Ferguson (1996), ∑

N
i=1 N−1ZiZ′

i
a.s.
→ QZZ ⇒ ∑i N−1ZiZ′

i
p
→Q

44.ii) ∑
N
i=1 Ziξ̃

′
i = OP(N1−δ̃/2) because ∑

N
i=1 Ziξ̃

′
i = ∑

N
i=1

0 0 xi1ξi
0 0 xi2ξi
0 0 uiξi

 with ξi = ĝo(xi2)−go(xi2). By

triangle inequality, E|∑N
i=1 xi1ξ |≤ ∑

N
i=1 E|xi1ξ | and using Holder’s inequality:

E|
N

∑
i=1

xi1ξ |≤
N

∑
i=1

(E|xi1|2)1/2(E|ξi|2)1/2 = Op(N1−δ̃/2).

The last equality holds because E|ξi|2= Op(N−δ̃ ) by Lemma 1, E|xi1|2= Op(1) by Assumption 1 and
because {xi1,xi2,εi}N

i=1 is an i.i.d. sequence we have that ∑
N
i=1 xi1ξi = Op(N1−δ̃/2). A similar reasoning

applies to the other elements.
44.iii) ∑

N
i=1 ξ̃ ′

i Zi = Op(N1−δ̃/2) using a similar reasoning as in point 44. ii).

44.iv)∑N
i=1 ξ̃iξ̃

′
i = Op(N1−δ̃ ) because ∑

N
i=1 ξ̃iξ̃

′
i = ∑

N
i=1

0 0 0
0 0 0
0 0 ξ 2

i

 . Then, ∑
N
i=1 ξ 2

i = Op(N1−δ̃ ) by

Lemma 1 and because ξi are i.i.d.
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Secondly, we analyze each element of the second term of the expression 43. Then,

N

∑
i=1

Ẑi(Zi − Ẑi)
′
θo =

N

∑
i=1

Ẑiξ̃
′
i θo,=

N

∑
i=1

Ziξ̃
′
i θo +

N

∑
i=1

ξ̃iξ̃
′
i θo, (45)

45.i) ∑
N
i=1 Ziξ̃

′
i θo = Op(N1−δ̃/2) using a similar reasoning as in point 44.ii).

45.ii)∑N
i=1 ξ̃iξ̃

′
i θo = Op(N1−δ̃ ) using a similar reasoning as in point 44.iv).

Also,

N

∑
i=1

Ẑiωi =
N

∑
i=1

Ziωi +
N

∑
i=1

ξ̃iωi, (46)

46.i) ∑
N
i=1 Ziωi = Op(N1/2) because each term of ∑

N
i=1 Ziωi is Op(N1/2) by Markov’s inequality.

46.ii) ∑
N
i=1 ξiωi = Op(N1−δ̃/2) because E[∑N

i=1 ξiωi]≤ ∑
N
i=1 E[ξiωi] by triangle inequality. E[∑N

i=1 ξiωi]≤
NE[ξiωi] because {xi1,xi2,εi}N

i=1 is an i.i.d. sequence, E[∑N
i=1 ξiωi]≤ NE[|ξ 2

i |)1/2E[|ωi|2]1/2 by Hölder’s
inequality with E[|ξ 2

i |] = Op(N−δ̃ ) by Lemma 1.

Then, (∑N
i=1 ẐiẐ′

i)
−1 of expression 43 is Op(N−1), and the term (∑N

i=1 Ẑi(Zi − Ẑi)
′θo +∑

N
i=1 Ẑiωi of expres-

sion 43 is Op(N1−δ̃/2). Thus, we conclude that θ̂o converges to the true value with order N−δ̃/2. This
order is lower than the parametric one of −1/2 because δ̃/2 < 1/2 even if d = 1 and δ = 1 since from
Lemma 1, δ̃ = δ

δ+d .

12.1.2 Proof of Proposition 1

Using the stabilizing rate N1/2, we have that:

√
N(θ̂o −θo) = (

1
N ∑

N
i=1 ẐiẐ′

i
(A)

)−1(
1√
N ∑

N
i=1 Ẑi(Zi−Ẑi)

′θo

(B)
+

1√
N ∑

N
i=1 Ẑiωi

(C)
).

Let us analyze term by term:

(A) 1
N ∑

N
i=1 ẐiẐ′

i =
1
N ∑

N
i=1(Zi +(Ẑ′

i −Zi))(Zi +(Ẑ′
i −Zi))

′.

As in the proof of Theorem 1, we call ξ̃i = Ẑ′
i −Zi. Using this change of notation and expanding term (A)

we obtain:
1
N

N

∑
i=1

ẐiẐ′
i =

1
N

N

∑
i=1

(ZiZ′
i +2ξ̃iZ′

i + ξ̃iξ̃
′
i ),

1
N

N

∑
i=1

ẐiẐ′
i = QZZ +op(1)< ∞.

where QZZ is a positive definite non-stochastic and bounded matrix with full rank (This result is demon-
strated in the proof of Theorem 1).

B) 1√
N ∑

N
i=1 Ẑi(Zi − Ẑi)

′θo =
1√
N ∑

N
i=1(Zi + ξ̃i)ξ̃

′
i θo,

C) 1√
N ∑

N
i=1 Ẑiωi =

1√
N ∑

N
i=1 Ziωi +

1√
N ∑

N
i=1 ξ̃iωi.

According to Chernozhukov et al. (2018), one can bound terms 1√
N ∑

N
i=1 ξ̃iωi using empirical process

methods because the complexity of the parameter space of go(x2) is controlled. This is shown by
Farrell et al. (2021) who finds upper bounds on the complexity of the parameter space using localization
analysis and shows that the integral of its entropy is upper bounded. In addition, the term 1√

N ∑
N
i=1 ξ̃iξ̃

′
i θo
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converges to 0 because δ̃ > 1/2 even if δ̃/2 < 1/2 (Chernozhukov et al. (2018), pg. 5). This means that
1/4 < δ̃/2 < 1/2.

1√
N ∑

N
i=1(Ziωi) L

→N(0,σ2
ω QZZ) by Lindeberg-Levy CLT. Thus,

√
N(θ̂o −θo)→ N(0,σ2

ω Q−1
ZZ ).

Finally, 1√
N ∑

N
i=1 Ziξ̃

′
i θo diverges because ξi is multiplied by xi1, and x2i1 which are not centered at 0. As a

result of the presence of this term, we conclude that:

|
√

N(θ̂o −θo)| p
→∞.

12.1.3 Proof of Theorem 2

The estimator of ρ̂o is equal to:
ρ̂o = (û∗′Mx∗1

û∗)−1(û∗′Mx∗1
y∗). (47)

We know that y∗ = x∗1β1o +ρou∗+ω∗. Adding and substracting ρoû∗−ρoû∗ gives:

y∗ = x∗1β1o +ρoû∗+ ω̃
∗, (48)

with ω̃∗ = ω∗−ρoû∗.
Replacing 48 into 47 and re-arrenging gives:

ρ̂o = ρo +(û∗′Mx∗1
û∗)−1(û∗′Mx∗1

(ρo(u∗− û∗)+ω
∗)). (49)

Knowing that û = u+(go(x2)− ĝo(x2)) = u+ ξ , we can re-express û∗ as u∗+ ξ ∗ because û∗ = Mx2 û.
Then, replacing û∗ = u∗+ξ ∗ in 49 and re-arrenging gives:

ρ̂o = ρo +
(û∗′Mx∗1

û∗)−1

(1)

(−ρou∗′Mx∗1
ξ ∗

(2)

−ρoξ ∗′Mx∗1
ξ ∗

(3)

+u∗′Mx∗1
ω∗

(4)

+ξ ∗′Mx∗1
ω∗)

(5)
. (50)

Now, we can analyze each term of 50:

1. The denominator of 50 is Op(N). To see why, we expand term (1) and obtain:

û∗′Mx∗1
û∗ =

u∗′Mx∗1
u∗

(1.1)
+

u∗′Mx∗1
ξ ∗

(1.2)
+

ξ ∗′Mx∗1
u∗

(1.3)
+

ξ ∗′Mx∗1
ξ ∗

(1.4)
. (51)

Now, analyzing element by element of expression 51:

i. Term (1.1) u∗′Mx∗1
u∗ = Op(N) because:

u∗′Mx∗1
u∗ =

u′Mx∗1
u

(1.1.1)
− u′Mx∗1

Px2 u

(1.1.2)
− u′Px2 Mx∗1

u

(1.1.3)
+

u′Px2 Mx∗1
Px2 u

(1.1.4)
.

A. Term (1.1.1) u′Mx∗1
u = u′u−u′Px∗1

u = Op(N) since:

• u′u = Op(N) because E[u2
i ]< ∞ by Assumption 1 and by Markov’s inequality.

• u′Px∗1
u ≤ ||Px∗1

u||||Px∗1
u||≤ ||u||||u|| where the first inequality holds by Cauchy-

Schwarz inequality and the second one by Pythagoras’ theorem (Chudik and
Pesaran (2015)). Finally, ||u||||u||= Op(N1/2)Op(N1/2) because ||u||2= Op(N) by
Markov’s inequality.

B. Term (1.1.2) u′Mx∗1
Px2u = Op(N) since:

u′Mx∗1
Px2u = u′Px2u−u′Px∗1Px2

u = Op(N),

by similar reasoning as in point 1.i.A).
C. Term (1.1.3) u′Px2Mx∗1

u = Op(N) since:

u′Px2Mx∗1
u = u′Px2u−u′Px2Px∗1

u = Op(N),

by similar reasoning as in point 1.i.A).
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D. Term (1.1.4) u′Px2Mx∗1
Px2u = Op(N) since:

u′Px2Mx∗1
Px2 u = u′Px2Px2u−u′Px2Px∗1

Px2u = Op(N),

by similar reasoning as in point 1.i.A).

ii. Term (1.2) ξ ∗′Mx∗1
u∗ = Op(N1−δ̃/2), because if we expand it and analyze each part:

ξ
∗′Mx∗1

u∗ =
u′Mx∗1

ξ

(1.2.1)
− u′Mx∗1

Px2 ξ

(1.2.2)
− u′Px2 Mx∗1

Mx2 ξ

(1.2.3)
+

u′Px2 Mx∗1
Px2 ξ

(1.2.4)

A. Term (1.2.1) u′Mx∗1
ξ = u′ξ −u′Px∗1

ξ = Op(N1−δ̃/2) because:

• u′ξ = Op(N1−δ/2) since by triangle inequality, E|∑N
i=1 uiξi|≤ ∑

N
i=1 E|uiξ | and

using Holder’s inequality:

E|
N

∑
i=1

uiξi|≤
N

∑
i=1

(E|ui|2)1/2(E|ξi|2)1/2 = Op(N1−δ̃/2).

The last equality holds because E|ξi|2= Op(N−δ̃ ) by Lemma 1, E|ui|2= Op(1)
by Assumption 1 and because {xi1,xi2,εi}N

i=1 is an i.i.d. sequence we have that

∑
N
i=1 uiξi = Op(N1−δ̃/2).

• u′Px∗1
ξ = Op(N1−δ̃/2) because u′Px∗1

ξ ≤ ||(Px∗1
u)||||(Px∗1

ξ )|| by Cauchy-Schwarz
inequality and ||(Px∗1

u)||||(Px∗1
ξ )||≤ ||u||||ξ || by Pythagoras’ theorem (Chudik and

Pesaran (2015)).
Finally, ||u||||ξ ||=Op(N1/2)Op(N1/2−δ̃/2)=Op(N1−δ̃/2) because E[∑u2

i ] =∑
N
i=1 E[u2

i ] =
Op(N) since {xi1,xi2,εi}N

i=1 is an i.i.d. sequence and E[u2
i ] =Op(1) by Assumption

1. Similarly, we have that ||ξ ||=
√

∑
N
i=1 ξ 2

i = Op(N1/2−δ̃/2).

B. Term (1.2.2) u′Mx∗1
Px2ξ = u′Px2ξ −u′Px∗1

Px2ξ = Op(N1−δ̃/2) by similar reasoning as
in point 1.a.ii.A.

C. Term (1.2.3) u′Px2Mx∗1
Mx2ξ = u′Px2Mx∗1

ξ − u′Px2Mx∗1
Px2ξ = Op(N1−δ̃/2) by similar

reasoning as in point 1.a.ii.A.

D. Term (1.2.4) u′Px2Mx∗1
Px2 ξ = u′Px2Px2ξ −u′Px2Px∗1

Px2ξ = Op(N1−δ̃/2) by similar rea-
soning as in point 1.a.ii.A.

iii. Term (1.3) u∗′Mx∗1
ξ ∗ =Op(N1−δ̃/2) because it is a scalar which means that (u∗′Mx∗1

ξ ∗)′ =

ξ ∗′Mx∗1
u∗.

iv. Term (1.4) ξ ∗′Mx∗1
ξ ∗ = Op(N1−δ̃ ) because if we expand it and analyze each part:

ξ
∗′Mx∗1

ξ
∗ =

ξ ′Mx∗1
ξ

(1.4.1)
− ξ ′Mx∗1

Px2 ξ

(1.4.2)
− ξ ′Px2 Mx∗1

ξ

(1.4.3)
+

ξ ′Px2 Mx∗1
Px2 ξ

(1.4.4)

A. Term (1.4.1) ξ ′Mx∗1
ξ = ξ ′ξ −ξ ′Px∗1

ξ = Op(N1−δ̃ ) because:

• ξ ′ξ = Op(N1−δ̃ ) because E[ξ ′ξ ] = ∑
N
i=1 E[ξ 2

i ] = NE[ξ 2
i ] because ξi is i.i.d and

E[ξ 2
i ] = Op(N δ̃ ) by Lemma 1.

• ξ ′Px∗1
ξ = Op(N1−δ̃ ) because ξ ′Px∗1

ξ ≤ ||ξ ||||ξ || by Cauchy-Schwarz inequality

and Pythagoras’ theorem. Then, ||ξ ||= Op(N1/2−δ̃/2).

B. (1.4.2)ξ ′Mx∗1
Px2ξ = ξ ′Px2ξ −ξ ′Px∗1

Px2ξ = Op(N1−δ̃ ) similar as point 1.a.iv.A.

C. (1.4.3)ξ ′Px2Mx∗1
ξ = ξ ′Px2ξ −ξ ′Px2Px∗1

ξ = Op(N1−δ̃ ) similar as point 1.a.iv.A.

D. (1.4.4)ξ ′Px2Mx∗1
Px2ξ = ξ ′Px2Px2ξ −ξ ′Px2Px∗1

Px2ξ =Op(N1−δ̃ ) similar as point 1.a.iv.A.

2. The numerator of 50 is Op(N1−δ̃/2). To see why, we expand each of its terms as follows:
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(a) Term (2) of 50 is Op(N1−δ̃/2). We expand term (2) and we obtain:

−ρou∗′Mx∗1
ξ
∗ =

−ρou′Mx∗1
ξ

(2.1)

+ρou′Mx∗1
Px2 ξ

(2.2)

+ρo(Px2 u)′Mx∗1
ξ

(2.3)

−ρo(Px2 u)′Mx∗1
Px2 ξ

(2.4)
. (52)

If we evaluate each term of 52, we have that:

i. Term (2.1) ρou′Mx∗1
ξ = ρou′ξ +ρou′Px∗1

ξ = Op(N1−δ̃/2) because:

A. ρou′ξ = Op(N1−δ̃/2) because by triangle inequality, E|∑N
i=1 uiξi|≤ ∑

N
i=1 E|uiξ | and

using Holder’s inequality:

E|
N

∑
i=1

uiξi|≤
N

∑
i=1

(E|ui|2)1/2(E|ξi|2)1/2 = Op(N1−δ̃/2).

The last equality holds because E|ξi|2= Op(N−δ̃ ) by Lemma 1, E|ui|2= Op(1)
by Assumption 1 and because {xi1,xi2,εi}N

i=1 is an i.i.d. sequence we have that

∑
N
i=1 uiξi = Op(N1−δ̃/2).

B. ρou′Px∗1
ξ = Op(N1−δ̃/2) because ρou′Px∗1

ξ ≤ ||(Px∗1
u)||||(Px∗1

ξ )|| by Cauchy-Schwarz
inequality and ||(Px∗1

u)||||(Px∗1
ξ )||≤ ||u||||ξ || by Pythagoras’ theorem (Chudik and

Pesaran (2015)). Finally, ||u||||ξ ||= Op(N1/2)Op(N1/2−δ̃/2) = Op(N1−δ̃/2) because
E[∑u2

i ] ≤ ∑
N
i=1 E[u2

i ] = Op(N) where the inequality holds because {xi1,xi2,εi}N
i=1

is an i.i.d. sequence and E[u2
i ] = Op(1) by Assumption 1. Similarly, we have that

||ξ ||=
√

∑
N
i=1 ξ 2

i = Op(N1/2−δ̃/2) by Lemma 1 and because ξi is i.i.d.

ii. Term (2.2) ρou′Mx∗1
Px2ξ = ρou′Px2ξ −ρou′Px∗1

Px2ξ = Op(N1−δ̃/2) because:

A. ρou′Px2ξ = Op(N1−δ̃/2) because u′Px2ξ ≤ ||Px2u||||Px2ξ || by Cauchy-Schwarz in-
equality. And ||Px2u||||Px2ξ ||≤ ||u||||ξ || by Pythagoras’ theorem. Then, ||u||||ξ ||=
Op(N1−δ̃/2) as shown in 2.a.i.A).

B. ρou′Px∗1
Px2ξ = Op(N1−δ̃/2) by following a similar reasoning as in point 2.a.ii.A).

iii. Term (2.3) ρo(Px2 u)′Mx∗1
ξ = ρo(Px2u)′ξ +ρo(Px2u)′Px∗1

ξ = Op(N1−δ̃/2), because:

A. ρou′P′
x2

ξ = Op(N1−δ̃/2) by following a similar reasoning as in point 2.a.ii.A).

B. ρo(Px2u)′Px∗1
ξ = Op(N1−δ̃/2) by following a similar reasoning as in point 2.a.ii.A).

iv. Term (2.4) −ρou′P′
x2

Mx∗1
Px2ξ = ρou′Px2ξ −ρou′P′

x2
Px∗1

Px2ξ = Op(N1−δ̃/2), because:

A. ρou′Px2ξ = Op(N1−δ̃/2) by following a similar reasoning as in point 2.a.ii.A).

B. ρou′Px2Px∗1
Px2ξ = Op(N1−δ̃/2) by following a similar reasoning as in point 2.a.ii.A).

(b) Term (3) of 50 is Op(N1−δ̃ ). To see why, we expand term (3) and we obtain:

−ρoξ
∗′Mx∗1

ξ
∗ =

−ρoξ ′Mx∗1
ξ

(3.1)
+

ρoξ ′Mx∗1
Px2 ξ

(3.2)
+

ρo(Px2 ξ )′Mx∗1
ξ

(3.3)
− ρo(Px2 ξ )′Mx∗1

Px2 ξ

(3.4)
, (53)

If we evaluate each term of 52, we have that:

i. Term (3.1) −ρoξ ′Mx∗1
ξ =−ρoξ ′ξ +ρoξ ′Px∗1

ξ = Op(N1−δ̃ ) because:

A. ρoξ ′ξ = Op(N1−δ̃ ) since E[ξ ′ξ ] = ∑
N
i=1 E[ξ 2

i ] = NE[ξ 2
i ] because ξi is i.i.d. and

E[ξ 2
i ] = Op(N δ̃ ) by Lemma 1.

ii. Term (3.2) ρoξ ′Mx∗1
Px2ξ = ρoξ ′Px2ξ −ρoξ ′Px∗1

Px2ξ = Op(N1−δ̃ ) because:

A. ρoξ ′Px2ξ = Op(N1−δ̃ ) since ξ ′Px2ξ ≤ ||ξ ||||ξ || by Cauchy-Schwarz inequality and
Triangle Inequality. Then, ||ξ ||= Op(N1/2−δ̃/2) as shown in point 2.a.i.B.
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B. ρoξ ′Px∗1
Px2ξ =Op(N1−δ̃ ) because ξ ′Px∗1

Px2ξ ≤ ||ξ ||||ξ || by Cauchy-Schwarz inequal-

ity and Triangle Inequality. Then, ||ξ ||= Op(N1/2−δ̃/2) as shown in point 2.a.i.B.

iii. Term (3.3) ρo(Px2 ξ )′Mx∗1
Px2ξ = ρoξ ′Px2ξ −ρo(Px2ξ )′Px∗1

Px2ξ = Op(N1−δ̃ ) because:

A. ξ ′Px2ξ = Op(N1−δ̃ ) as point 2.b.ii.A.

B. ρo(Px2ξ )′Px∗1
Px2ξ = Op(N1−δ̃ ) similar as point 2.b.ii.A.

(c) Term (4) of 50 is Op(N1/2). To see why, we expand term (4) and we obtain:

u∗′Mx∗1
ω

∗ = u′ω
(4.1)−

u′Px2 ω

(4.2) − u′Px∗1
ω

(4.3)
+

u′Px∗1
Px2 ω

(4.4)
+

u′Px2 Px∗1
ω

(4.5)
− u′Px2 Px∗1

Px2 ω

(4.6)
,

because:

i. Term (4.1) u′ω = Op(N1/2) by Markov’s inequality and independence of u and ω .

ii. Term (4.2) u′Px2ω =∑
N
i=1 uiωi pii+∑

N
i=1 ∑i ̸= j uiω j pi j =Op(N1/2) by Markov’s Inequality

and independence of ui and ωi (with pi j a typical element of Px2 ).

iii. Term (4.3) u′Px∗1
Px2ω = Op(N1/2), by applying a similar reasoning as point in 2.c.ii.

iv. Term (4.4) u′Px∗1
Px2ω = Op(N1/2) by applying a similar reasoning as point in 2.c.ii.

v. Term (4.5) u′Px2Px∗1
ω = Op(N1/2) by applying a similar reasoning as point in 2.c.ii.

vi. Term (4.6) u′Px2Px∗1
Px2ω = Op(N1/2) by applying a similar reasoning as point in 2.c.ii.

(d) Term (5) of 50 is Op(N1−δ̃/2). To see why, we expand term (5) and we obtain:

ξ
∗′Mx∗1

ω
∗ =

ξ ′Mx∗1
ω

(5.1)
+

ξ ′Mx∗1
ω

(5.1)
− ξ ′Px2 ω

(5.2) +
ξ ′Px∗1

Px2 ω

(5.3)
− ξ ′Px2 ω

(5.4) +
ξ ′Px2 Px∗1

ω

(5.5)
+

ξ ′Px2 Px2 ω

(5.6) − ξ ′Px2 Px∗1
Px2 ω

(5.7)

because:

i. Term (5.1) ξ ′Mx∗1
ω = Op(N1−δ̃/2) because:

A. ξ ′ω = Op(N1−δ̃/2) because by Triangle inequality E|∑ωiξi|≤ ∑
N
i=1 E|ωiξi| and by

Hölder inequality ∑
N
i=1 E|ω2

i |1/2|ξi|21/2 = NE|ω2
i |1/2E|ξ 2

i |1/2 where the equality
holds because ωi and ξi are i.i.d. Finally, E|ω2

i |= Op(1) because of Assumption 1
andE|ξ 2

i |= OP(N−δ̃ ) by Lemma 1.

B. ξ ′Px∗1
ω = Op(N1−δ̃/2) because ξ ′Px∗1

ω ≤ ||Px∗1
ω||||Px∗1

ξ ′|| by Cauchy Schwarz in-
equality and |Px∗1

ω||||Px∗1
ξ ′||≤ ||ω||||ξ || by Pythagoras’ theorem.

ii. Term (5.3) ξ ′Px2ω = Op(N1−δ̃/2) by similar reasoning as in point 2.d.i.B).

iii. Term (5.4) ξ ′Px∗1
Px2ω = Op(N1−δ̃/2), by similar reasoning as in point 2.d.i.B).

iv. Term (5.5) ξ ′Px2ω = Op(N1−δ̃/2), by similar reasoning as in point 2.d.i.B).

v. Term (5.6) ξ ′Px2Px∗1
ω = Op(N1−δ̃/2), by similar reasoning as in point 2.d.i.B).

vi. Term (5.7) ξ ′Px2Px2ω = Op(N1−δ̃/2), by similar reasoning as in point 2.d.i.B).

vii. Term (5.8) (5.8)ξ ′Px2Px∗1
Px2ω = Op(N1−δ̃/2), by similar reasoning as in point 2.d.i.B).

We can conclude that:
ρ̂o −ρo = op(1)

because the denominator is Op(N) and the numerator is Op(N1−δ̃/2).
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12.1.4 Proof of Theorem 3

The estimator of β1o is equal to:

β̂1o = (û′x∗1)
−1(û′ŷ∗∗), (54)

with û = x− ĝo(x2), û∗ = Mx2 û, x∗1 = Mx2 x1 and

y∗ = x∗1β1o +ρou∗+ω
∗, (55a)

ŷ∗∗ = y∗− ρ̂oû∗. (55b)

Replacing 55 into β̂1o gives:

β̂1o = β1o +
(û′x∗1)

−1

(1)
(ρoû′u∗+û′ω∗−ρ̂oû′û∗)

(2) . (56)

Now, if we analyze each term of 56:

1. The denominator of 56 is Op(N). To see why, we expand term (1) and obtain:

û′x∗1 =
u′Mx2 x1
(1.1) +

ξ ′Mx2 x1
(1.2) .

i. Term (1.1) u′Mx2x1 = u′Mx2u+u′Mx2go(x2) = Op(N) because:
• u′Mx2u = u′u+u′Px2u = Op(N) with: u′u = Op(N) by Markov’s Inequality and As-

sumption 1, and u′Px2u=Op(N) by Pythagoras’ theorem, Cauchy-Schwarz inequality
and Assumption 1.

ii. u′Mx2go(x2) = u′go(x2)+u′Px2go(x2) with u′go(x2) = Op(N1/2) by Markov’ Inequality
and Assumption 1, and u′Px2 go(x2) =Op(N1/2) because u′Px2 go(x2) =∑

N
i=1 uigo(xi2)pii+

∑i ∑ j uigo(x j2)p ji = Op(N1/2) by Markovs’ inequality (with pi j a typical element of Px2 ).

iii. Term (1.2) ξ ′Mx2x1 = ξ ′Mx2u+ξ ′Mx2g(x2) = Op(N1−δ̃ ) because:

A. ξ ′Mx2u = ξ ′u + ξ ′Px2u with ξ ′u = Op(N1−δ̃/2) by Triangle Inequality, Hölder’s
inequality and Lemma 1, and ξ ′Px2u = Op(N1−δ̃/2) by Cauchy-Schwarz inequality,
Pythagoras’ theorem and Lemma 1.

2. The numerator of 56 is Op(N1−δ̃ ). To get this result we replace ρ̂o = ρo +op(1) in Term (2) and
obtain:

(2) = u′Mx2 ω

(2.1) +
ξ ′Mx2 ω

(2.2.) − ρou′Mx2 ξ

(2.3) − ρoξ ′Mx2 ξ

(2.4) −op(1)

Analyzing term by term:

(a) Term (2.1) u′Mx2ω = u′ω−u′Px2ω =Op(N1/2) because u′ω =Op(N1/2) by Markov’s Inequal-
ity and independence of ui and ωi. u′Px2ω = ∑

N
i=1 uiωi pii +∑

N
i=1 ∑i̸= j uiω j pi j = Op(N1/2) by

Markov’s Inequality and independence of ui and ωi.

(b) Term (2.2) ξ ′Mx2ω = ξ ′ω − ξ ′Px2ω = Op(N1−δ̃/2) because ξ ′ω = Op(N1−δ̃ ) by Hölder’s
Inequality, Assumption 1 and Lemma 1, ξ ′Px2ω by Pythagoras’ theorem, Cauchy-Schwarz
Inequality, Assumption 1 and Lemma 1.

(c) Term (2.3) ρou′Mx2ξ = ρou′ξ − ρou′Px2ξ = Op(N1−δ̃/2) because ρou′ξ = Op(N1−δ̃/2) by
Hölder’s Inequality, Assumption 1 and Lemma 1 and ρou′Px2ξ = Op(N1−δ̃/2) by Pythagoras’
theorem, Cauchy-Schwarz Inequality Assumption 1 and Lemma 1.

(d) Term (2.4) ρoξ ′Mx2ξ = ρoξ ′ξ −ρoξ ′Px2ξ =Op(N1−δ̃ ) because ρoξ ′ξ =Op(N1−δ̃ ) by Lemma
1, and ρoξ ′Px2ξ = Op(N1−δ̃ ) by Pythagoras’ theorem, Cauchy-Schwarz Inequality, and
Lemma 1.

Then, we can conclude that β̂1o −β1o = op(1).
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12.1.5 Proof of Proposition 2

In order to obtain the asymptotic distribution of our estimator, we pre-multiply it by the stabilizing rate√
N:

√
N(β̂1o −β1o) =

( 1
N û′x∗1)

−1

(1)
( 1√

N
ρoû′u∗+ 1√

N
û′ω∗− 1√

N
ρ̂oû′û∗)

(2)
.

In the proof of Theorem 3, we show that ( 1
N û′x∗1) = Op(N). Thus, if we divide it by N and apply the plim

operator we obtain:

plim
1
N

û′x∗1 = plim
1
N

u′Mx2u+ plim
1
N

u′Mx2go(x2) = D,

where D < ∞ is a constant.
While the term (2):

(
1√
N

ρoû′u∗+
1√
N

û′ω∗− 1√
N

ρ̂oû′û∗),

is equal to:

(2) =
1√
N
(u′Mx2ω +ξ

′Mx2ω −ρou′Mx2ξ −ρoξ
′Mx2ξ −op(1)).

By Lindeberg-Feller CLT:
1√
N

u′Mx2ω L
→N(0,V ).

According to Chernozhukov et al. (2018), one can bound the terms 1√
N

ξ ′Mx2ω and 1√
N

ρou′Mx2ξ using
empirical process methods if the complexity of the parameter space of go(x2) is controlled. Moreover,
Farrell et al. (2021) finds upper bounds on the complexity of the parameter space using localization
analysis and proving that the integral of its entropy is upper bounded.
Finally, the term 1√

N
ρoξ ′Mx2ξ converges to 0 as shown in the proof of Proposition 1.

Thus,

√
N(β̂1o −β1o)

L
→N(0,D−1V D−1)

with D = plimN−1û′x∗1, and V = E[ω2]u′Mx2u.

12.2 DGP used in simulations
In this annex, we present detailed results for the bias and RMSE of the estimation methods used are: OLS
ignoring endogeneity (OLS), 2SLS using as IVs ĝ(xi2) (2SLS), OLS p.: OLS using ĝ(xi2) instead of xi1
(OLS Orth. Vble.), naive Control function approach (CF), naive Control function approach with sample
splitting (CF SS), control function approach with orthogonal score (CF-OS), control function approach
with orthogonal score with sample splitting (CF-OS SS), estimation with asymmetric errors (AE), and
estimation with heteroskedastic errors (HE).
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12.2.1 The results: details

Table 3: Results: Identification through non-linearity

Scenario NNa OLS 2SLS OLS p. CF CF-SS CF-OS CF-OS SS AE

1.1 1 Bias 0.6649 2x103 21.1024 1x103 -176.6393 0.0047 0.0029 0.2339
RMSE 0.6649 4x104 347.9398 5x103 7x104 0.0289 0.0273 0.9058

2 Bias 0.6649 0.00134 -0.0017 0.0043 -0.0026 0.0097 0.0170 0.5817
RMSE 0.6649 0.0280 0.1056 0.0937 0.1011 0.0312 0.0368 0.5996

1.2 1 Bias 0.6897 8x103 14.2120 1x103 353.7859 0.0171 0.0151 0.6967
RMSE 0.6897 4x104 194.0042 6x103 6x103 0.0340 0.0287 0.7224

2 Bias 0.6897 0.0034 -0.0224 0.0258 -0.0034 0.0242 0.0338 0.5448
RMSE 0.6897 0.0250 0.1085 0.0968 0.0947 0.0490 0.0537 0.6118

1.3 1 Bias 0.3828 −1x103 18.5853 -558.2235 1x103 0.0044 0.0030 0.1735
RMSE 0.3830 6x104 137.3490 6x103 8x103 0.0272 0.0270 0.3045

2 Bias 0.3828 0.0032 0.0023 0.0037 0.01197 0.01296 0.01197 0.0572
RMSE 0.3830 0.02762 0.1033 0.0532 0.0513 0.0295 0.0305 0.1920

1.4 1 Bias 0.6670 3x103 -50.0306 1x103 2x103 0.0059 0.0099 0.3293
RMSE 0.6672 1.4996 42.6451 9x103 1x104 0.0396 0.0490 0.4500

2 Bias 0.6670 0.0027 -0.0062 0.0118 -0.0178 0.0148 -0.0178 0.5087
RMSE 0.6672 0.0384 0.1232 0.0999 0.1080 0.0453 0.0464 0.5999

NNa: Neural Network Architecture, OLS: OLS ignoring endogeneity, 2SLS: 2SLS using as IV ĝ(xi2) , OLS p.: OLS with ĝ(xi2) in lieu
of xi1, CF: Naive Control function approach, CF SS: Naive Control function approach with sample splitting, CF-OS: Control function approach
with orthogonal score, CF-OS SS: Control function approach with orthogonal score with sample splitting, AE: estimation with asymmetric errors.

Table 4: Results: Identification through non-linearity

Scenario NNa OLS 2SLS OLS p. CF CF-SS CF-OS CF-OS SS AE

2.1 1 Bias 0.8514 1x103 -0.2942 -198.0749 975.9478 0.0061 0.01197 0.4562
RMSE 0.8514 1x104 1.6223 5x103 6x103 0.0716 0.0703 0.5032

2 Bias 0.8514 -0.0031 0.0049 -0.0111 -0.0418 0.0094 0.0215 0.5811
RMSE 0.8514 0.0747 0.1904 0.1756 0.1712 0.0738 0.0732 0.5995

2.2 1 Bias 0.8532 2X103 -0.6772 936.9051 702.8788 0.0059 0.0237 0.3061
RMSE 0.853 3X104 8.9066 7x103 7x103 0.0665 0.0775 0.4491

2 Bias 0.8532 -0.0005 0.0106 -0.0142 -0.0069 0.0200 0.0268 0.6011
RMSE 0.8532 0.0622 0.2105 0.2234 0.1411 0.0735 0.0635 0.6255

2.3 1 Bias 0.4375 855.6320 -6.1070 -95.9539 -381.1568 -0.0048 -0.0017 0.0223
RMSE 0.4376 2X104 55.3283 8x103 7x103 0.0732 0.0988 0.1996

2 Bias 0.4375 -0.0077 0.0234 -0.0215 -0.0405 0.0034 0.0085 0.079
RMSE 0.4376 0.0711 0.2569 0.1307 0.1294 0.0674 0.0670 0.2297

2.4 1 Bias 0.8529 -0.3089 -0.3257 1X103 1x103 0.0097 0.0190 0.2046
RMSE 0.8530 0.5398 0.6096 1x104 1x104 0.0978 0.1108 0.3826

2 Bias 0.8529 -0.0027 0.0145 -0.0154 -0.0363 0.0137 0.0184 0.5225
RMSE 0.8529 0.1041 0.2389 0.19465 0.1813 0.1056 0.1028 0.6146

NNa: Neural Network Architecture, OLS: OLS ignoring endogeneity, 2SLS: 2SLS using as IV ĝ(xi2) , OLS p.: OLS with ĝ(xi2) in lieu
of xi1, CF: Naive Control function approach, CF SS: Naive Control function approach with sample splitting, CF-OS: Control function approach
with orthogonal score, CF-OS SS: Control function approach with orthogonal score with sample splitting, AE: estimation with asymmetric errors.
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Table 5: Results: Identification through non-linearity

Scenario NNa OLS 2SLS OLS p. CF CF-SS CF-OS CF-OS SS AE

3.1 1 Bias 0.1797 -928.2880 -0.3099 -445.6430 271.4341 0.0004 0.0027 0.1920
RMSE 0.1797 4x104 0.5580 3x103 6x103 0.0084 0.0098 0.6014

2 Bias 0.1797 -0.0003 0.0354 -0.0326 -0.0748 0.0009 0.0046 0.5658
RMSE 0.1797 0.0083 0.1939 0.1745 0.2572 0.0082 0.0105 0.5860

3.2 1 Bias 0.1789 4x103 -0.2818 -203.8318 -858.9137 0.0004 0.004 -0.0129
RMSE 0.1790 4x104 0.5398 7x103 7x103 0.0068 0.0113 0.6554

2 Bias 0.1790 -0.0005 0.01797 -0.0167 -0.0840 0.0009 0.0020 0.0045
RMSE 0.1790 0.0067 0.14392 0.1259 0.2667 0.0069 0.0093 0.5657

3.3 1 Bias 0.1494 2x103 -0.4034 258.1177 1x103 -0.0004 0.0011 -0.1582
RMSE 0.1495 1x105 0.6334 7x103 6x103 0.0081 0.0095 0.4556

2 Bias 0.1494 -0.0009 0.04645 -0.0222 -0.0026 -0.00016 0.00180 0.0817
RMSE 0.1495 0.0081 0.2177 0.0980 0.1700 0.0081 0.0088 0.1963

3.4 1 Bias 0.1796 −5x103 -0.3335 1x103 -907.0396 0.0001 0.0018 0.1341
RMSE 0.1798 7x104 0.5755 5x103 1x104 0.0119 0.0354 0.0164

2 Bias 0.1796 -0.0003 0.07633 -0.0712 -0.0766 0.0006 0.0048 0.4388
RMSE 0.1798 0.0118 0.2523 0.2349 0.2679 0.0121 0.01493 0.5707

NNa: Neural Network Architecture, OLS: OLS ignoring endogeneity, 2SLS: 2SLS using as IV ĝ(xi2), OLS p.: OLS with ĝ(xi2) in lieu
of xi1, CF: Naive Control function approach, CF SS: Naive Control function approach with sample splitting, CF-OS: Control function approach
with orthogonal score, CF-OS SS: Control function approach with orthogonal score with sample splitting, AE: estimation with asymmetric errors.

Table 6: Results: Identification through non-linearity

Scenario NNa OLS 2SLS OLS p. CF CF-SS CF-OS CF-OS SS AE

4.1 1 Bias 0.3355 -0.3021 0.0094 115.9586 164.1640 -0.1218 -0.4279 -0.6845
RMSE 0.3355 0.54714 0.7159 5x103 6x103 0.1307 0.1261 1.0997

2 Bias 0.3355 -0.0006 0.0524 -0.0430 -0.1643 -0.0488 -0.1643 0.4787
RMS 0.3355 0.0118 0.1144 0.0906 0.0300 0.2136 0.1788 0.5720

4.2 1 Bias 0.3176 -0.3703 -0.0955 846.4034 -41.8410 -0.4188 -0.4676 -0.5346
RMSE 0.3177 0.7167 0.8895 6x103 6x103 0.59238 0.9269 1.9621

2 Bias 0.3176 -0.0006 0.1409 -0.1023 -0.2812 -0.1218 -0.4279 0.4202
RMSE 0.3177 0.0118 0.3126 0.2073 0.4321 0.2208 0.7546 0.6294

4.3 1 Bias 0.2446 -0.4117 -0.1621 -239.0584 -336.7148 -0.0629 -0.0753 -0.3791
RMSE 0.2447 0.6411 0.7771 5x103 5x103 0.0912 0.0926 0.8051

2 Bias 0.2446 -0.0002 0.0861 -0.0337 -0.0979 -0.0363 -0.0839 0.0466
RMSE 0.2447 0.0120 0.1825 0.0673 0.1276 0.0584 0.0970 0.2912

4.4 1 Bias 0.3360 -0.3814 -0.1427 369.0024 3x103 -0.0954 -0.1120 -0.1239
RMSE 0.3361 0.6169 0.7525 7x103 1x104 0.1287 0.1383 0.3682

2 Bias 0.3360 0.0005 0.0438 -0.0328 -0.1533 -0.0404 -0.1402 0.3306
RMSE 0.3361 0.0200 0.1085 0.0792 0.1893 0.0774 0.1580 0.5347

NNa: Neural Network Architecture, OLS: OLS ignoring endogeneity, 2SLS: 2SLS using as IV ĝ(xi2), OLS p.: OLS with ĝ(xi2) in lieu
of xi1, CF: Naive Control function approach, CF SS: Naive Control function approach with sample splitting, CF-OS: Control function approach
with orthogonal score, CF-OS SS: Control function approach with orthogonal score with sample splitting, AE: estimation with asymmetric errors.
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Table 7: Results: Identification through non-linearity

Scenario NNa OLS 2SLS OLS p. CF CF-SS CF-OS CF-OS SS AE

5.1 3 Bias 0.6057 1x103 1.7134 1x103 135.1169 -0.0005 0.0018 -0.6044
RMSE 0.6060 4x104 12.6218 1x104 1x104 0.0305 0.0339 1.3416

2 Bias 0.6057 -0.0016 0.0095 -0.0143 -0.0269 0.0037 0.0066 0.6060
RMSE 0.6060 0.0280 0.0949 0.1127 0.0925 0.0331 0.0361 0.8420

5.2 3 Bias 0.4485 3x103 8.2462 -125.4860 -637.0997 0.0025 -0.0003 -0.4141
RMSE 0.5248 2x104 30.9276 8x103 1x104 0.0225 0.0228 1.3551

2 Bias 0.5245 -0.0018 0.0340 -0.0336 -0.0274 0.0015 -0.0010 -0.1332
RMSE 0.5248 0.0179 0.1102 0.1162 0.1324 0.0269 0.0236 1.8098

5.3 3 Bias 0.4634 -290.4078 0.6734 -544.4481 -663.3685 -0.0011 0.0012 -0.7514
RMSE 0.4637 3x104 9.1896 6x103 1x104 0.0235 0.0243 1.2807

2 Bias 0.4634 -0.0030 -0.0001 -0.0051 -0.0178 -0.0006 0.0019 0.0986
RMSE 0.3593 0.0228 0.0903 0.0619 0.0589 0.0237 0.0237 0.7200

5.4 3 Bias 0.6051 15.4014 5.4780 1x103 -300.6532 -0.0003 0.0010 0.1042

RMSE 0.6059 4x104 28.2858 1x104 1x104 0.0411 0.0443 1.1745

2 Bias 0.6051 -0.0027 0.0210 -0.0303 -0.0215 0.0010 0.0053 0.7554
RMSE 0.6059 0.0401 0.0939 0.1118 0.1048 0.0443 0.0417 0.9908

NNa: Neural Network Architecture, OLS: OLS ignoring endogeneity, 2SLS: 2SLS using as IV ĝ(xi2), OLS p.: OLS with ĝ(xi2) in lieu
of xi1, CF: Naive Control function approach, CF SS: Naive Control function approach with sample splitting, CF-OS: Control function approach
with orthogonal score, CF-OS SS: Control function approach with orthogonal score with sample splitting, AE: estimation with asymmetric errors.

Table 8: Results: Identification through non-linearity

Scenario NNa OLS 2SLS OLS p. CF CF-SS CF-OS CF-OS SS AE

6.1 1 Bias 0.6005 -890.3404 0.4323 558.5078 -616.3224 0.0012 0.0051 0.5243
RMSE 0.6006 3x104 6.2552 7X103 1X104 0.0338 0.0386 1.1550

2 Bias 0.6005 -0.0018 0.0073 -0.0165 -0.0116 0.0017 0.0048 0.6060
RMSE 0.6006 0.0337 0.0716 0.1174 0.1120 0.0346 0.0348 0.8420

6.2 1 Bias 0.4485 -0.2974 4.4691 -525.6529 -586.2450 -0.0003 0.0033 0.6075
RMSE 0.4486 0.5484 22.7238 7X103 5X103 0.0226 0.0403 1.3727

2 Bias 0.4485 -0.0022 -0.0005 -0.0057 -0.0551 0.0002 0.0004 0.4059
RMSE 0.4486 0.0269 0.0814 0.1320 0.1275 0.0300 0.0312 1.2859

6.3 1 Bias 0.3591 3x103 -0.3090 1x103 5x103 -0.0016 -0.0007 0.2016
RMSE 0.3592 3x104 0.5612 1X104 2X104 0.0324 0.0366 0.7777

2 Bias 0.3591 -0.0036 0.0027 -0.0091 -0.0184 -0.0003 0.0015 0.2365
RMSE 0.3592 0.0327 0.0924 0.0913 0.0834 0.0328 0.0345 0.9094

6.4 1 Bias 0.6017 1x103 0.7729 775.5588 −2X103 -0.0006 0.0010 0.1425
RMSE 0.6020 4x104 7.2574 1X104 2X104 0.0433 0.0560 1.3331

2 Bias 0.6017 -0.0028 0.0035 -0.0129 -0.0252 0.0016 0.0029 1.2737
RMSE 0.6020 0.0470 0.0917 0.1324 0.1090 0.0477 0.0486 1.3936

NNa: Neural Network Architecture, OLS: OLS ignoring endogeneity, 2SLS: 2SLS using as IVs ĝ(xi2), OLS p.: OLS with ĝ(xi2) in lieu
of xi1, CF: Naive Control function approach, CF SS: Naive Control function approach with sample splitting, CF-OS: Control function approach
with orthogonal score, CF-OS SS: Control function approach with orthogonal score with sample splitting, AE: estimation with asymmetric errors.
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Table 9: Results: Identification through non symmetric errors

Scenario NNa OLS 2SLS OLS p. CF CF-SS CF-OS CF-OS SS AE

7.1 1 Bias 0.9762 1x103 0.4953 146.8609 -304.7458 1.000 1.001 -0.0000
RMSE 0.9832 1.0079 1.0310 1,799.0315 1,134.1874 1.0004 1.0017 0.0087

2 Bias 0.9762 1.010 0.9251 1.0055 1.0092 1.0070 1.0247 -0.0017
RMSE 0.9832 1.010 1.0542 796.8959 3,683.3361 1.0005 1.0016 0.0193

7.2 1 Bias 0.9832 0.4679 0.2865 -276.0129 128.8530 1.0006 1.0018 -0.0000
RMSE 0.9832 1.0080 1.0568 1,823.3477 1,995.9748 0.7887 1.0019 0.0194

2 Bias 0.9832 1.011 1.0429 1.0009 1.0014 1.0003 1.0015 -0.0002
RMSE 0.9832 1.011 1.0555 1.0009 1.0014 1.0004 1.0017 0.0081

7.3 1 Bias 0.9832 0.5268 0.3998 42.2218 -129.9619 1.0005 1.0019 -0.0025
RMSE 0.9832 1.0069 1.0502 1,474.3769 2,431.0240 0.8249ß 1.0020 0.0182

2 Bias 0.9832 1.0098 1.1822 1.0021 1.0010 1.0003 1.0016 -0.0007
RMSE 0.9832 1.0099 1.5399 1.0022 1.0011 1.0003 1.0017 0.0082

7.4 1 Bias 0.9832 0.3676 0.3335 -294.0027 -116.4456 1.0004 1.0017 -0.0034
RMSE 0.9832 1.0077 1.0446 1,706.1568 1,353.6921 1.0005 1.0018 0.0172

2 Bias 0.9832 1.0113 1.0532 1.0009 1.0007 1.0003 1.0016 -0.0019
RMSE 0.9832 1.0115 1.0679 1.0009 1.0007 1.0004 1.0017 0.0098

NNa: Neural Network Architecture, OLS: OLS ignoring endogeneity, 2SLS: 2SLS using as IVs ĝ(xi2), OLS p.: OLS with ĝ(xi2) in lieu
of xi1, CF: Naive Control function approach, CF SS: Naive Control function approach with sample splitting, CF-OS: Control function approach
with orthogonal score, CF-OS SS: Control function approach with orthogonal score with sample splitting, AE: estimation with asymmetric errors.

Table 10: Results: Identification through non symmetric errors

Scenario NNa OLS 2SLS OLS p. CF CF-SS CF-OS CF-OS SS AE HE

8.1 1 Bias 0.8631 -1.7457 1.0873 0.5553 1.5123 1.0005 0.9981 -0.3601 0.0743
RMSE 0.8632 2.1172 3.1759 0.9457 31.4379 1.0007 0.9988 1.2729 0.1019

2 Bias 0.5645 0.9839 1.0049 1.0021 1.0069 0.9996 1.0052 -0.3048 0.0518
RMSE 0.5649 0.9931 1.0261 1.0043 1.0086 1.0002 1.0078 0.7385 0.1106

NNa: Neural Network Architecture, OLS: OLS ignoring endogeneity, 2SLS: 2SLS using as IVs ĝ(xi2), OLS p.: OLS with ĝ(xi2) in lieu
of xi1, CF: Naive Control function approach, CF SS: Naive Control function approach with sample splitting, CF-OS: Control function approach
with orthogonal score, CF-OS SS: Control function approach with orthogonal score with sample splitting, AE: estimation with asymmetric errors,
HE: estimation with heteroskedastic errors.
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Figure 5: Linear structural equation and non-linear reduced-form equation: DGP 2-Scenario 1
Note: The true parameter value is 1 (β1 = 1).
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Figure 6: Linear structural equation and non-linear reduced-form equation: DGP 3-Scenario 1
Note: The true parameter value is 1 (β1 = 1).
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Figure 7: Linear structural equation and non-linear reduced-form equation: DGP 4-Scenario 1
Note: The true parameter value is 1 (β1 = 1).
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Figure 8: Linear structural equation and non-linear reduced-form equation: DGP 5-Scenario 1
Note: The true parameter value is 1 (β1 = 1).
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Figure 9: Linear structural equation and non-linear reduced-form equation: DGP 6-Scenario 1
Note: The true parameter value is 1 (β1 = 1).
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